Datasets:
Commit
·
494f500
1
Parent(s):
c84ed9a
Update open_australian_legal_embeddings.py
Browse files
open_australian_legal_embeddings.py
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 Umar Butler.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
"""Open Australian Legal Embeddings: the first open-source embeddings of Australian legislative and judicial documents"""
|
| 15 |
+
|
| 16 |
+
import datasets
|
| 17 |
+
for module in ('orjson', 'ujson', 'json'):
|
| 18 |
+
try:
|
| 19 |
+
json = __import__(module)
|
| 20 |
+
|
| 21 |
+
break
|
| 22 |
+
except ImportError:
|
| 23 |
+
pass
|
| 24 |
+
|
| 25 |
+
_CITATION = """\
|
| 26 |
+
@misc{butler-2023-open-australian-legal-embeddings,
|
| 27 |
+
author = {Butler, Umar},
|
| 28 |
+
year = {2023},
|
| 29 |
+
title = {Open Australian Legal Embeddings},
|
| 30 |
+
publisher = {Hugging Face},
|
| 31 |
+
version = {1.0.0},
|
| 32 |
+
url = {https://huggingface.co/datasets/umarbutler/open-australian-legal-embeddings}
|
| 33 |
+
}
|
| 34 |
+
"""
|
| 35 |
+
|
| 36 |
+
_DESCRIPTION = """\
|
| 37 |
+
The Open Australian Legal Embeddings are the first open-source embeddings of Australian legislative and judicial documents.
|
| 38 |
+
|
| 39 |
+
Trained on the largest open database of Australian law, the [Open Australian Legal Corpus](https://huggingface.co/datasets/umarbutler/open-australian-legal-corpus), the Embeddings consist of roughly 5.2 million 384-dimensional vectors embedded with [`BAAI/bge-small-en-v1.5`](https://huggingface.co/BAAI/bge-small-en-v1.5).
|
| 40 |
+
|
| 41 |
+
The Embeddings open the door to a wide range of possibilities in the field of Australian legal AI, including the development of document classifiers, search engines and chatbots.
|
| 42 |
+
|
| 43 |
+
To ensure their accessibility to as wide an audience as possible, the Embeddings are distributed under the same licence as the [Open Australian Legal Corpus](https://huggingface.co/datasets/umarbutler/open-australian-legal-corpus/blob/main/LICENCE.md)."""
|
| 44 |
+
|
| 45 |
+
_HOMEPAGE = "https://huggingface.co/datasets/umarbutler/open-australian-legal-embeddings"
|
| 46 |
+
|
| 47 |
+
_LICENSE = """\
|
| 48 |
+
The Embeddings are distributed under the same licence as the [Open Australian Legal Corpus](https://huggingface.co/datasets/umarbutler/open-australian-legal-corpus/blob/main/LICENCE.md)."""
|
| 49 |
+
|
| 50 |
+
_URLS = {
|
| 51 |
+
'embeddings' : 'data/embeddings.jsonl',
|
| 52 |
+
'metadatas' : 'data/metadatas.jsonl',
|
| 53 |
+
'texts' : 'data/texts.jsonl',
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
class OpenAustralianLegalEmbeddings(datasets.GeneratorBasedBuilder):
|
| 57 |
+
"""Open Australian Legal Embeddings: the first open-source embeddings of Australian legislative and judicial documents"""
|
| 58 |
+
|
| 59 |
+
VERSION = datasets.Version("1.0.0")
|
| 60 |
+
|
| 61 |
+
DEFAULT_CONFIG_NAME = "train"
|
| 62 |
+
|
| 63 |
+
def _info(self):
|
| 64 |
+
return datasets.DatasetInfo(
|
| 65 |
+
description=_DESCRIPTION,
|
| 66 |
+
features=datasets.Features(
|
| 67 |
+
{
|
| 68 |
+
'version_id' : datasets.Value('string'),
|
| 69 |
+
'type' : datasets.Value('string'),
|
| 70 |
+
'jurisdiction' : datasets.Value('string'),
|
| 71 |
+
'source' : datasets.Value('string'),
|
| 72 |
+
'citation' : datasets.Value('string'),
|
| 73 |
+
'url' : datasets.Value('string'),
|
| 74 |
+
'is_last_chunk' : datasets.Value('bool'),
|
| 75 |
+
'text' : datasets.Value('string'),
|
| 76 |
+
'embedding' : [datasets.Value('float32')]
|
| 77 |
+
}
|
| 78 |
+
),
|
| 79 |
+
homepage=_HOMEPAGE,
|
| 80 |
+
license=_LICENSE,
|
| 81 |
+
citation=_CITATION,
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
def _split_generators(self, dl_manager):
|
| 85 |
+
downloaded_files = dl_manager.download_and_extract(_URLS)
|
| 86 |
+
|
| 87 |
+
return [
|
| 88 |
+
datasets.SplitGenerator(
|
| 89 |
+
name=datasets.Split.TRAIN,
|
| 90 |
+
gen_kwargs={
|
| 91 |
+
'embeddings_path' : downloaded_files['embeddings'],
|
| 92 |
+
'metadatas_path' : downloaded_files['metadatas'],
|
| 93 |
+
'texts_path' : downloaded_files['texts'],
|
| 94 |
+
}
|
| 95 |
+
)
|
| 96 |
+
]
|
| 97 |
+
|
| 98 |
+
def _generate_examples(self, embeddings_path, metadatas_path, texts_path):
|
| 99 |
+
with open(embeddings_path, 'rb') as embeddings_file, \
|
| 100 |
+
open(metadatas_path, 'rb') as metadatas_file, \
|
| 101 |
+
open(texts_path, 'rb') as texts_file:
|
| 102 |
+
i = -1
|
| 103 |
+
|
| 104 |
+
for embedding, metadata, text in zip(embeddings_file, metadatas_file, texts_file):
|
| 105 |
+
i += 1
|
| 106 |
+
yield i, json.loads(metadata) | {
|
| 107 |
+
'text' : json.loads(text),
|
| 108 |
+
'embedding' : json.loads(embedding)
|
| 109 |
+
}
|