Datasets:
File size: 3,464 Bytes
ff22615 30b3c9b 8a56c8f 30b3c9b ff22615 0cd4aa7 ff22615 0cd4aa7 ff22615 0cd4aa7 ff22615 0cd4aa7 ff22615 0cd4aa7 ff22615 0cd4aa7 ff22615 0cd4aa7 ff22615 0cd4aa7 ff22615 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
---
datasets: lh9171338/SS360
pretty_name: SS360 Dataset
license: mit
tags:
- computer-vision
- line-segment-detection
- wireframe-parsing
- spherical image
size_categories: 1K<n<10
---
# SS360 Dataset
<p align="center">
✏️ <a href="https://github.com/lh9171338/ULSD-ISPRS"><b>Github</b></a>   |   📑 <a href="https://www.sciencedirect.com/science/article/abs/pii/S0924271621001623">Paper</a>    |   🖼️ <a href="https://huggingface.co/spaces/lh9171338/LineViewer">Viewer</a>
</p>
This is the SS360 dataset, designed for spherical image line segment detection.
## Summary
The SS360 dataset is constructed by manually annotating images sourced from the [SUN360 dataset](https://3dvision.princeton.edu/projects/2012/SUN360/) and the [Stanford 2D-3D-S dataset](https://sdss.redivis.com/datasets/f304-a3vhsvcaf). It is organized into JSONL files (train/metadata.jsonl, test/metadata.jsonl) along with the corresponding images.
Number of samples:
- Train: 950
- Test: 118
## Download
- Download with huggingface-hub
```shell
python3 -m pip install huggingface-hub
huggingface-cli download --repo-type dataset lh9171338/SS360 --local-dir ./
```
- Download with Git
```shell
git lfs install
git clone https://huggingface.co/datasets/lh9171338/SS360
```
## Usage
- Load the dataset from Hugging Face Hub
```python
from datasets import load_dataset
ds = load_dataset("lh9171338/SS360")
# or load from `refs/convert/parquet` for acceleration
# from datasets import load_dataset, Features, Image, Sequence, Value
# features = Features({
# "image": Image(),
# "image_file": Value("string"),
# "image_size": Sequence(Value("int32")),
# "camera_type": Value("string"),
# "lines": Sequence(Sequence(Sequence(Value("float32")))),
# })
# ds = load_dataset("lh9171338/SS360", features=features, revision="refs/convert/parquet")
print(ds)
# DatasetDict({
# train: Dataset({
# features: ['image', 'image_file', 'image_size', 'camera_type', 'lines'],
# num_rows: 950
# })
# test: Dataset({
# features: ['image', 'image_file', 'image_size', 'camera_type', 'lines'],
# num_rows: 118
# })
# })
print(ds["test"][0].keys())
# dict_keys(['image', 'image_file', 'image_size', 'camera_type', 'lines'])
```
- Load the dataset from local
```python
from datasets import load_dataset
ds = load_dataset("imagefolder", data_dir=".")
print(ds)
# DatasetDict({
# train: Dataset({
# features: ['image', 'image_file', 'image_size', 'camera_type', 'lines'],
# num_rows: 950
# })
# test: Dataset({
# features: ['image', 'image_file', 'image_size', 'camera_type', 'lines'],
# num_rows: 118
# })
# })
print(ds["test"][0].keys())
# dict_keys(['image', 'image_file', 'image_size', 'camera_type', 'lines'])
```
- Load the dataset with jsonl files
```python
import jsonlines
with jsonlines.open("test/metadata.jsonl") as reader:
infos = list(reader)
print(infos[0].keys())
# dict_keys(['image', 'image_file', 'image_size', 'camera_type', 'lines'])
```
## Citation
```
@article{LI2021187,
title = {ULSD: Unified line segment detection across pinhole, fisheye, and spherical cameras},
author = {Hao Li and Huai Yu and Jinwang Wang and Wen Yang and Lei Yu and Sebastian Scherer},
journal = {ISPRS Journal of Photogrammetry and Remote Sensing},
volume = {178},
pages = {187-202},
year = {2021},
}
```
|