Datasets:
Tasks:
Text Classification
Sub-tasks:
multi-label-classification
Languages:
English
Size:
10K<n<100K
License:
| # coding=utf-8 | |
| # Copyright 2020 The HuggingFace Datasets Authors | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset""" | |
| import os | |
| from zipfile import ZipFile | |
| import datasets | |
| _CITATION = """\ | |
| @InProceedings{li2017dailydialog, | |
| author = {Li, Yanran and Su, Hui and Shen, Xiaoyu and Li, Wenjie and Cao, Ziqiang and Niu, Shuzi}, | |
| title = {DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset}, | |
| booktitle = {Proceedings of The 8th International Joint Conference on Natural Language Processing (IJCNLP 2017)}, | |
| year = {2017} | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| We develop a high-quality multi-turn dialog dataset, DailyDialog, which is intriguing in several aspects. | |
| The language is human-written and less noisy. The dialogues in the dataset reflect our daily communication way | |
| and cover various topics about our daily life. We also manually label the developed dataset with communication | |
| intention and emotion information. Then, we evaluate existing approaches on DailyDialog dataset and hope it | |
| benefit the research field of dialog systems. | |
| """ | |
| _URL = "http://yanran.li/files/ijcnlp_dailydialog.zip" | |
| act_label = { | |
| "0": "__dummy__", # Added to be compatible out-of-the-box with datasets.ClassLabel | |
| "1": "inform", | |
| "2": "question", | |
| "3": "directive", | |
| "4": "commissive", | |
| } | |
| emotion_label = { | |
| "0": "no emotion", | |
| "1": "anger", | |
| "2": "disgust", | |
| "3": "fear", | |
| "4": "happiness", | |
| "5": "sadness", | |
| "6": "surprise", | |
| } | |
| class DailyDialog(datasets.GeneratorBasedBuilder): | |
| """DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset""" | |
| VERSION = datasets.Version("1.0.0") | |
| __EOU__ = "__eou__" | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "dialog": datasets.features.Sequence(datasets.Value("string")), | |
| "act": datasets.features.Sequence(datasets.ClassLabel(names=list(act_label.values()))), | |
| "emotion": datasets.features.Sequence(datasets.ClassLabel(names=list(emotion_label.values()))), | |
| } | |
| ), | |
| supervised_keys=None, | |
| homepage="http://yanran.li/dailydialog", | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager: datasets.DownloadManager): | |
| dl_dir = dl_manager.download_and_extract(_URL) | |
| data_dir = os.path.join(dl_dir, "ijcnlp_dailydialog") | |
| splits = [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST] | |
| return [ | |
| datasets.SplitGenerator( | |
| name=split, | |
| gen_kwargs={ | |
| "data_zip": os.path.join(data_dir, f"{split}.zip"), | |
| "dialog_path": f"{split}/dialogues_{split}.txt", | |
| "act_path": f"{split}/dialogues_act_{split}.txt", | |
| "emotion_path": f"{split}/dialogues_emotion_{split}.txt", | |
| }, | |
| ) | |
| for split in splits | |
| ] | |
| def _generate_examples(self, data_zip, dialog_path, act_path, emotion_path): | |
| with open(data_zip, "rb") as data_file: | |
| with ZipFile(data_file) as zip_file: | |
| with zip_file.open(dialog_path) as dialog_file, zip_file.open(act_path) as act_file, zip_file.open( | |
| emotion_path | |
| ) as emotion_file: | |
| for idx, (dialog_line, act_line, emotion_line) in enumerate( | |
| zip(dialog_file, act_file, emotion_file) | |
| ): | |
| if not dialog_line.strip(): | |
| break | |
| dialog = dialog_line.decode().split(self.__EOU__)[:-1] | |
| act = act_line.decode().split(" ")[:-1] | |
| emotion = emotion_line.decode().split(" ")[:-1] | |
| assert ( | |
| len(dialog) == len(act) == len(emotion) | |
| ), "Different turns btw dialogue & emotion & action" | |
| yield idx, { | |
| "dialog": dialog, | |
| "act": [act_label[x] for x in act], | |
| "emotion": [emotion_label[x] for x in emotion], | |
| } | |