SAT / scripts /filter.py
lifuguan's picture
Add files using upload-large-folder tool
f706a86 verified
import json
import os
from pathlib import Path
from tqdm import tqdm
def check_json_data(json_file_path, images_root_dir):
"""检查JSON数据的完整性 - 只过滤有image字段但图像不存在的数据"""
# 加载JSON文件
try:
with open(json_file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
except Exception as e:
print(f"加载JSON文件失败: {e}")
return []
anomalous_data = []
total_entries = len(data)
print(f"开始检查 {total_entries} 条数据...")
for i, entry in enumerate(tqdm(data, desc="检查图像文件", unit="条")):
issues = []
# 只检查image字段相关的问题
if 'image' in entry:
image_path = entry['image']
# if not image_path or image_path.strip() == '':
# issues.append("图像路径为空")
# else:
# # 检查图像文件是否存在
# if images_root_dir:
# # 构建完整的图像文件路径
# full_image_path = Path(images_root_dir) / image_path
# else:
# full_image_path = Path(json_file_path).parent / image_path
# if not full_image_path.exists():
# issues.append(f"图像文件不存在: {image_path}")
if len(image_path) == 0:
issues.append("图像路径为空")
else:
for img in image_path:
if not Path(img).exists():
issues.append(f"图像文件不存在: {img}")
# 如果有问题,记录异常数据
if issues:
anomalous_entry = {
'index': i,
'id': entry.get('id', 'Unknown'),
'image': entry.get('image', 'N/A'),
'entry': entry,
'issues': issues
}
anomalous_data.append(anomalous_entry)
return anomalous_data
def save_valid_data(json_file_path, anomalous_data, output_file='filtered_data.json'):
"""保存过滤后的有效数据"""
# 加载原始数据
with open(json_file_path, 'r', encoding='utf-8') as f:
original_data = json.load(f)
# 获取异常数据的索引
anomalous_indices = {anomaly['index'] for anomaly in anomalous_data}
# 过滤出有效数据
valid_data = [entry for i, entry in enumerate(original_data) if i not in anomalous_indices]
# 保存有效数据
with open(output_file, 'w', encoding='utf-8') as f:
json.dump(valid_data, f, indent=2, ensure_ascii=False)
print(f"过滤后的有效数据已保存到: {output_file}")
print(f"原始数据: {len(original_data)} 条")
print(f"有效数据: {len(valid_data)} 条")
print(f"过滤掉: {len(anomalous_data)} 条")
def save_anomalous_data(anomalous_data, output_file='anomalous_data.json'):
"""保存异常数据到文件"""
if anomalous_data:
with open(output_file, 'w', encoding='utf-8') as f:
json.dump(anomalous_data, f, indent=2, ensure_ascii=False)
print(f"异常数据已保存到: {output_file}")
else:
print("没有异常数据需要保存")
def print_statistics(json_file_path, anomalous_data):
"""打印统计信息"""
with open(json_file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
total_entries = len(data)
anomalous_count = len(anomalous_data)
print(f"\n=== 数据统计 ===")
print(f"总条目数: {total_entries}")
print(f"图像异常条目数: {anomalous_count}")
print(f"有效条目数: {total_entries - anomalous_count}")
print(f"数据有效率: {((total_entries - anomalous_count) / total_entries * 100):.2f}%")
# 字段存在统计
fields_stats = {
'id': sum(1 for entry in data if 'id' in entry),
'image': sum(1 for entry in data if 'image' in entry),
'conversations': sum(1 for entry in data if 'conversations' in entry)
}
print(f"\n=== 字段存在统计 ===")
for field, count in fields_stats.items():
print(f"包含'{field}'字段的条目: {count}/{total_entries} ({count/total_entries*100:.1f}%)")
# 主执行函数
def main():
json_file = 'train_data_processed.json'
images_root_dir = 'images'
# 检查文件是否存在
if not os.path.exists(json_file):
print(f"文件不存在: {json_file}")
return
# 检查数据
anomalous_data = check_json_data(json_file, images_root_dir)
# 输出结果
if anomalous_data:
print(f"\n发现 {len(anomalous_data)} 条图像异常数据:")
print("=" * 50)
# 只显示前10条异常数据,避免输出过多
for anomaly in anomalous_data[:10]:
print(f"索引: {anomaly['index']}")
print(f"ID: {anomaly['id']}")
print(f"图像: {anomaly['image']}")
print(f"问题: {', '.join(anomaly['issues'])}")
print("-" * 30)
if len(anomalous_data) > 10:
print(f"... 还有 {len(anomalous_data) - 10} 条异常数据")
# 保存异常数据
# save_anomalous_data(anomalous_data)
# 保存过滤后的有效数据
# save_valid_data(json_file, anomalous_data)
# 按问题类型统计
issue_counts = {}
for anomaly in anomalous_data:
for issue in anomaly['issues']:
issue_type = issue.split(':')[0] if ':' in issue else issue
issue_counts[issue_type] = issue_counts.get(issue_type, 0) + 1
print(f"\n=== 问题类型统计 ===")
for issue_type, count in sorted(issue_counts.items()):
print(f"{issue_type}: {count}次")
else:
print("✅ 所有数据的图像文件都正常!")
# 即使没有异常数据,也保存一份完整的数据
# save_valid_data(json_file, anomalous_data, 'filtered_filtered_data.json')
# 打印统计信息
print_statistics(json_file, anomalous_data)
if __name__ == "__main__":
main()