File size: 6,280 Bytes
775ac97 cda9f21 775ac97 3ec1270 ce91894 f7cacad e876f69 b4b28ba 180d86e 775ac97 17a2b91 775ac97 7a45e55 617b238 7a45e55 cc2e678 ed825f9 7a45e55 559d36b ea29f32 559d36b 7a45e55 ed825f9 7a45e55 ed825f9 7a45e55 ed825f9 7a45e55 ed825f9 7a45e55 ed825f9 7a45e55 ed825f9 b992dcd 7a45e55 ed825f9 7a45e55 ed825f9 7a45e55 ed825f9 7a45e55 ed825f9 7a45e55 ed825f9 7a45e55 ed825f9 7a45e55 ed825f9 7a45e55 ed825f9 7a45e55 ed825f9 b992dcd ed825f9 9e824fd 0332e7c ed825f9 f675e9d ed825f9 f675e9d ed825f9 b992dcd ed825f9 f675e9d ed825f9 f675e9d ed825f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
---
license: mit
dataset_info:
features:
- name: qid
dtype: string
- name: video_id
dtype: string
- name: question_type
dtype: string
- name: capability
dtype: string
- name: question
dtype: string
- name: duration
dtype: string
- name: question_prompt
dtype: string
- name: answer
dtype: string
- name: youtube_url
dtype: string
splits:
- name: test
num_bytes: 515490
num_examples: 1000
- name: test_primary_oe
num_bytes: 695302
num_examples: 1000
- name: test_paraphrased_oe
num_bytes: 702618
num_examples: 1000
- name: test_correctly_led_oe
num_bytes: 719648
num_examples: 1000
- name: test_wrongly_led_oe
num_bytes: 715143
num_examples: 1000
- name: test_all
num_bytes: 3348201
num_examples: 5000
download_size: 21546400
dataset_size: 8685160
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
- split: test_paraphrased_oe
path: data/test_paraphrased_oe-*
- split: test_correctly_led_oe
path: data/test_correctly_led_oe-*
- split: test_wrongly_led_oe
path: data/test_wrongly_led_oe-*
- split: test_all
path: data/test_all-*
- split: test_primary_oe
path: data/test_primary_oe-*
---
# Towards Video Thinking Test (Video-TT): A Holistic Benchmark for Advanced Video Reasoning and Understanding
<img src="teaser_2_page-0001.jpg" style="width:70%;">
Video-TT comprises 1,000 YouTube videos, each paired with one open-ended question and four adversarial questions designed to probe visual and narrative complexity.
Paper: https://arxiv.org/abs/2507.15028
Project page: https://zhangyuanhan-ai.github.io/video-tt/
## 🚀 What's New
- **[2025.03]** We release the benchmark!
## 1. Why Do We Need a New Benchmark Like Video-TT?
- **Sampling vs. Understanding:** Current video understanding benchmarks do not clearly distinguish between errors caused by insufficient frame sampling and errors due to failures in actual video comprehension. We ensure that each question in Video-TT can be answered with 80 uniformly sampled frames—frames that most current video models can easily process.
- **Pursuing Human-Level Video Understanding:** We carefully select Q&A pairs where humans achieve an 87.5% accuracy rate, while the best models only reach 47.5%. In contrast, when sampling is not a limiting factor, current video models score above 85% on existing video understanding benchmarks [1].
## 2. Dataset Summary
### Dataset Statistics
- **Number of videos:** 1,000, primarily in formats like YouTube Shorts.
- **Number of Q&A pairs:** Each video is paired with five questions that probe different aspects of the same content, designed to challenge model robustness in adversarial scenarios:
- Primary open-ended question
- Paraphrased open-ended question
- Correctly-led open-ended question
- Wrongly-led open-ended question
- Multiple-choice question
One example of five question types is shown below:
<img src="dataset_expansion_page-0001.jpg" style="width:50%;">
### Evaluation Metrics
#### Correctness:
Measures accuracy for each question type. We use Qwen2.5-72B as the judge for open-ended questions and a rule-based method for multiple-choice questions.
#### Robustness:
Let:
- A_primary_correct be the set of videos where the primary open-ended question is answered correctly.
- A_paraphrased_correct be the set of videos where the paraphrased open-ended question is answered correctly.
- A_correctly_led_correct be the set of videos where the correctly-led open-ended question is answered correctly.
- A_wrongly_led_correct be the set of videos where the wrongly-led open-ended question is answered correctly.
- A_multiple_choice_correct be the set of videos where the multiple-choice question is answered correctly.
The set of videos where all five questions are answered correctly, denoted as A_full_correct, is the intersection of all these sets:
A_full_correct = A_primary_correct ∩ A_paraphrased_correct ∩ A_correctly_led_correct ∩ A_wrongly_led_correct ∩ A_multiple_choice_correct
Thus, the **Robustness Score (RB)** becomes:
R = |A_full_correct| / |A_primary_correct|
Where |A| denotes the size of the set A, representing the number of videos in that set.
## 3. Ensuring the Quality of Video-TT
<img src="annotation_pipeline_page-0001.jpg" style="width:70%;">
The Video-TT annotation process consists of four stages:
- **Stage 1:** We select complex videos that allow for challenging questions. (Refer to the paper for the definition of complexity factors.)
- **Stage 2:** We prompt several vision-language models (VLMs) to check whether a question can be answered. If a model answers it correctly, we remove the question.
- **Stage 3:** For each remaining question, we provide an answer and an explanation.
- **Stage 4:** We manually verify that each question can be answered using 80 uniformly sampled frames.
For more details, please refer to the paper.
## 4. Run and exactly reproduce qwen2vl results!
```
# pip install git+https://github.com/EvolvingLMMs-Lab/lmms-eval.git
# pip3 install qwen_vl_utils
# export HF_HOME="~/.cache/huggingface"
accelerate launch --num_processes=8 --main_process_port=12346 -m lmms_eval \
--model videott_single_mc \
--model_args=pretrained=Qwen/Qwen2.5-VL-7B-Instruct,max_pixels=12845056,attn_implementation=flash_attention_2,interleave_visuals=False \
--tasks mme \
--batch_size 1
```
## 5. Leaderboard
<!-- For the latest leaderboard, please refer to **XXX**. You can submit your evaluations there. Some results are produced by us, while others are submitted by external researchers.
To reproduce our results, please check **XXX** for evaluation scripts. -->
<img src="771742752771_.pic.jpg" style="width:70%;">
## 6. Dataset Maintenance
If you find any mistakes in the dataset, please submit the corresponding `question_id` to our issue page. Our team is committed to maintaining this dataset in the long run to ensure its quality.
<!--
## 7. Acknowledgments
(Include acknowledgments as needed.) -->
[1] Fu, Chaoyou, et al. "Video-mme: The first-ever comprehensive evaluation benchmark of multi-modal llms in video analysis." arXiv preprint arXiv:2405.21075 (2024). |