Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
Japanese
Size:
10K - 100K
ArXiv:
Tags:
question-generation
License:
Update qag_jaquad.py
Browse files- qag_jaquad.py +79 -0
qag_jaquad.py
CHANGED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import datasets
|
| 3 |
+
|
| 4 |
+
logger = datasets.logging.get_logger(__name__)
|
| 5 |
+
_VERSION = "0.0.0"
|
| 6 |
+
_NAME = "qag_jaquad"
|
| 7 |
+
_CITATION = """
|
| 8 |
+
@inproceedings{ushio-etal-2022-generative,
|
| 9 |
+
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
|
| 10 |
+
author = "Ushio, Asahi and
|
| 11 |
+
Alva-Manchego, Fernando and
|
| 12 |
+
Camacho-Collados, Jose",
|
| 13 |
+
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
|
| 14 |
+
month = dec,
|
| 15 |
+
year = "2022",
|
| 16 |
+
address = "Abu Dhabi, U.A.E.",
|
| 17 |
+
publisher = "Association for Computational Linguistics",
|
| 18 |
+
}
|
| 19 |
+
"""
|
| 20 |
+
_DESCRIPTION = """Question & answer generation dataset based on SQuAD."""
|
| 21 |
+
_URL = f"https://huggingface.co/datasets/lmqg/{_NAME}/resolve/main/data/processed"
|
| 22 |
+
_URLS = {
|
| 23 |
+
'train': f'{_URL}/train.jsonl',
|
| 24 |
+
'test': f'{_URL}/test.jsonl',
|
| 25 |
+
'validation': f'{_URL}/validation.jsonl'
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class QAGJAQuADConfig(datasets.BuilderConfig):
|
| 30 |
+
"""BuilderConfig"""
|
| 31 |
+
|
| 32 |
+
def __init__(self, **kwargs):
|
| 33 |
+
"""BuilderConfig.
|
| 34 |
+
Args:
|
| 35 |
+
**kwargs: keyword arguments forwarded to super.
|
| 36 |
+
"""
|
| 37 |
+
super(QAGJAQuADConfig, self).__init__(**kwargs)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class QAGJAQuAD(datasets.GeneratorBasedBuilder):
|
| 41 |
+
|
| 42 |
+
BUILDER_CONFIGS = [
|
| 43 |
+
QAGJAQuADConfig(name=_NAME, version=datasets.Version(_VERSION), description=_DESCRIPTION),
|
| 44 |
+
]
|
| 45 |
+
|
| 46 |
+
def _info(self):
|
| 47 |
+
return datasets.DatasetInfo(
|
| 48 |
+
description=_DESCRIPTION,
|
| 49 |
+
features=datasets.Features(
|
| 50 |
+
{
|
| 51 |
+
"answers": datasets.Sequence(datasets.Value("string")),
|
| 52 |
+
"questions": datasets.Sequence(datasets.Value("string")),
|
| 53 |
+
"paragraph": datasets.Value("string"),
|
| 54 |
+
"questions_answers": datasets.Value("string")
|
| 55 |
+
}
|
| 56 |
+
),
|
| 57 |
+
supervised_keys=None,
|
| 58 |
+
homepage="https://github.com/asahi417/lm-question-generation"
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
def _split_generators(self, dl_manager):
|
| 62 |
+
downloaded_file = dl_manager.download_and_extract(_URLS)
|
| 63 |
+
return [
|
| 64 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_file["train"]}),
|
| 65 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_file["validation"]}),
|
| 66 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_file["test"]}),
|
| 67 |
+
]
|
| 68 |
+
|
| 69 |
+
def _generate_examples(self, filepath):
|
| 70 |
+
_key = 0
|
| 71 |
+
logger.info("generating examples from = %s", filepath)
|
| 72 |
+
with open(filepath, encoding="utf-8") as f:
|
| 73 |
+
_list = f.read().split('\n')
|
| 74 |
+
if _list[-1] == '':
|
| 75 |
+
_list = _list[:-1]
|
| 76 |
+
for i in _list:
|
| 77 |
+
data = json.loads(i)
|
| 78 |
+
yield _key, data
|
| 79 |
+
_key += 1
|