Datasets:
Upload IUPAC_pKa_preprocessing.py
Browse files- IUPAC_pKa_preprocessing.py +263 -0
IUPAC_pKa_preprocessing.py
ADDED
|
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# This is a script to preprocess the IUPAC_pKa dataset
|
| 2 |
+
|
| 3 |
+
# 1. Load necessary modules
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import numpy as np
|
| 6 |
+
import rdkit
|
| 7 |
+
from rdkit import Chem
|
| 8 |
+
import molvs
|
| 9 |
+
import tqdm
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
|
| 12 |
+
standardizer = molvs.Standardizer()
|
| 13 |
+
fragment_remover = molvs.fragment.FragmentRemover()
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# 2. Download dataset
|
| 17 |
+
# https://github.com/IUPAC/Dissociation-Constants/blob/main/iupac_high-confidence_v2_2.csv
|
| 18 |
+
# Suppose that we have downloaded 'iupac_high-confidence_v2_2.csv'
|
| 19 |
+
|
| 20 |
+
raw_df = pd.read_csv('iupac_high-confidence_v2_2.csv')
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
# 3. SMILES sanitization
|
| 24 |
+
raw_df['X'] = [ \
|
| 25 |
+
rdkit.Chem.MolToSmiles(
|
| 26 |
+
fragment_remover.remove(
|
| 27 |
+
standardizer.standardize(
|
| 28 |
+
rdkit.Chem.MolFromSmiles(
|
| 29 |
+
smiles))))
|
| 30 |
+
for smiles in raw_df['SMILES']]
|
| 31 |
+
|
| 32 |
+
problems = []
|
| 33 |
+
for index, row in tqdm.tqdm(raw_df.iterrows()):
|
| 34 |
+
result = molvs.validate_smiles(row['X'])
|
| 35 |
+
if len(result) == 0:
|
| 36 |
+
continue
|
| 37 |
+
problems.append((row['X'], result))
|
| 38 |
+
|
| 39 |
+
# Most are because it includes the salt form and/or it is not neutralized
|
| 40 |
+
for result, alert in problems:
|
| 41 |
+
print(f"SMILES: {result}, problem: {alert[0]}")
|
| 42 |
+
|
| 43 |
+
raw_df.to_csv('IUPAC_pKa_sanitized.csv', index = False)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
# 4. Formatting and naming
|
| 48 |
+
sanitized_df = pd.read_csv('IUPAC_pKa_sanitized.csv')
|
| 49 |
+
|
| 50 |
+
formatted_df = sanitized_df.drop('SMILES', axis=1) # drop the raw SMILES column
|
| 51 |
+
formatted_df = formatted_df.rename(columns={'X': 'SMILES'}) # use the sanitized SMILES
|
| 52 |
+
formatted_df = formatted_df.rename(columns={'pka_value': 'Y'}) # rename the pKa column
|
| 53 |
+
formatted_df['Y'] = pd.to_numeric(formatted_df['Y'], errors='coerce') # convert string to float64 for the 'Y' column
|
| 54 |
+
column_to_move = formatted_df.columns[-1] # Move the sanitized SMILES
|
| 55 |
+
new_order = formatted_df.columns.tolist()
|
| 56 |
+
new_order.remove(column_to_move)
|
| 57 |
+
new_order.insert(1, column_to_move)
|
| 58 |
+
formatted_df = formatted_df[new_order]
|
| 59 |
+
|
| 60 |
+
formatted_df.to_csv('IUPAC_pKa_formatted.csv', index = False)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
# 5. Import modules to split the dataset
|
| 65 |
+
import sys
|
| 66 |
+
from rdkit import DataStructs
|
| 67 |
+
from rdkit.Chem import AllChem as Chem
|
| 68 |
+
from rdkit.Chem import PandasTools
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
# 6. Split the dataset into train and test
|
| 72 |
+
|
| 73 |
+
class MolecularFingerprint:
|
| 74 |
+
def __init__(self, fingerprint):
|
| 75 |
+
self.fingerprint = fingerprint
|
| 76 |
+
|
| 77 |
+
def __str__(self):
|
| 78 |
+
return self.fingerprint.__str__()
|
| 79 |
+
|
| 80 |
+
def compute_fingerprint(molecule):
|
| 81 |
+
try:
|
| 82 |
+
fingerprint = Chem.GetMorganFingerprintAsBitVect(molecule, 2, nBits=1024)
|
| 83 |
+
result = np.zeros(len(fingerprint), np.int32)
|
| 84 |
+
DataStructs.ConvertToNumpyArray(fingerprint, result)
|
| 85 |
+
return MolecularFingerprint(result)
|
| 86 |
+
except:
|
| 87 |
+
print("Fingerprints for a structure cannot be calculated")
|
| 88 |
+
return None
|
| 89 |
+
|
| 90 |
+
def tanimoto_distances_yield(fingerprints, num_fingerprints):
|
| 91 |
+
for i in range(1, num_fingerprints):
|
| 92 |
+
yield [1 - x for x in DataStructs.BulkTanimotoSimilarity(fingerprints[i], fingerprints[:i])]
|
| 93 |
+
|
| 94 |
+
def butina_cluster(fingerprints, num_points, distance_threshold, reordering=False):
|
| 95 |
+
nbr_lists = [None] * num_points
|
| 96 |
+
for i in range(num_points):
|
| 97 |
+
nbr_lists[i] = []
|
| 98 |
+
|
| 99 |
+
dist_fun = tanimoto_distances_yield(fingerprints, num_points)
|
| 100 |
+
for i in range(1, num_points):
|
| 101 |
+
dists = next(dist_fun)
|
| 102 |
+
|
| 103 |
+
for j in range(i):
|
| 104 |
+
dij = dists[j]
|
| 105 |
+
if dij <= distance_threshold:
|
| 106 |
+
nbr_lists[i].append(j)
|
| 107 |
+
nbr_lists[j].append(i)
|
| 108 |
+
|
| 109 |
+
t_lists = [(len(y), x) for x, y in enumerate(nbr_lists)]
|
| 110 |
+
t_lists.sort(reverse=True)
|
| 111 |
+
|
| 112 |
+
res = []
|
| 113 |
+
seen = [0] * num_points
|
| 114 |
+
while t_lists:
|
| 115 |
+
_, idx = t_lists.pop(0)
|
| 116 |
+
if seen[idx]:
|
| 117 |
+
continue
|
| 118 |
+
t_res = [idx]
|
| 119 |
+
for nbr in nbr_lists[idx]:
|
| 120 |
+
if not seen[nbr]:
|
| 121 |
+
t_res.append(nbr)
|
| 122 |
+
seen[nbr] = 1
|
| 123 |
+
if reordering:
|
| 124 |
+
nbr_nbr = [nbr_lists[t] for t in t_res]
|
| 125 |
+
nbr_nbr = frozenset().union(*nbr_nbr)
|
| 126 |
+
for x, y in enumerate(t_lists):
|
| 127 |
+
y1 = y[1]
|
| 128 |
+
if seen[y1] or (y1 not in nbr_nbr):
|
| 129 |
+
continue
|
| 130 |
+
nbr_lists[y1] = set(nbr_lists[y1]).difference(t_res)
|
| 131 |
+
t_lists[x] = (len(nbr_lists[y1]), y1)
|
| 132 |
+
t_lists.sort(reverse=True)
|
| 133 |
+
res.append(tuple(t_res))
|
| 134 |
+
return tuple(res)
|
| 135 |
+
|
| 136 |
+
def hierarchal_cluster(fingerprints):
|
| 137 |
+
|
| 138 |
+
num_fingerprints = len(fingerprints)
|
| 139 |
+
|
| 140 |
+
av_cluster_size = 8
|
| 141 |
+
dists = []
|
| 142 |
+
|
| 143 |
+
for i in range(0, num_fingerprints):
|
| 144 |
+
sims = DataStructs.BulkTanimotoSimilarity(fingerprints[i], fingerprints)
|
| 145 |
+
dists.append([1 - x for x in sims])
|
| 146 |
+
|
| 147 |
+
dis_array = ssd.squareform(dists)
|
| 148 |
+
Z = hierarchy.linkage(dis_array)
|
| 149 |
+
average_cluster_size = av_cluster_size
|
| 150 |
+
cluster_amount = int(num_fingerprints / average_cluster_size)
|
| 151 |
+
clusters = hierarchy.cut_tree(Z, n_clusters=cluster_amount)
|
| 152 |
+
|
| 153 |
+
clusters = list(clusters.transpose()[0])
|
| 154 |
+
cs = []
|
| 155 |
+
for i in range(max(clusters) + 1):
|
| 156 |
+
cs.append([])
|
| 157 |
+
|
| 158 |
+
for i in range(len(clusters)):
|
| 159 |
+
cs[clusters[i]].append(i)
|
| 160 |
+
return cs
|
| 161 |
+
|
| 162 |
+
def cluster_fingerprints(fingerprints, method="Auto"):
|
| 163 |
+
num_fingerprints = len(fingerprints)
|
| 164 |
+
|
| 165 |
+
if method == "Auto":
|
| 166 |
+
method = "TB" if num_fingerprints >= 10000 else "Hierarchy"
|
| 167 |
+
|
| 168 |
+
if method == "TB":
|
| 169 |
+
cutoff = 0.56
|
| 170 |
+
print("Butina clustering is selected. Dataset size is:", num_fingerprints)
|
| 171 |
+
clusters = butina_cluster(fingerprints, num_fingerprints, cutoff)
|
| 172 |
+
|
| 173 |
+
elif method == "Hierarchy":
|
| 174 |
+
print("Hierarchical clustering is selected. Dataset size is:", num_fingerprints)
|
| 175 |
+
clusters = hierarchal_cluster(fingerprints)
|
| 176 |
+
|
| 177 |
+
return clusters
|
| 178 |
+
|
| 179 |
+
def split_dataframe(dataframe, smiles_col_index, fraction_to_train, split_for_exact_fraction=True, cluster_method="Auto"):
|
| 180 |
+
try:
|
| 181 |
+
import math
|
| 182 |
+
smiles_column_name = dataframe.columns[smiles_col_index]
|
| 183 |
+
molecule = 'molecule'
|
| 184 |
+
fingerprint = 'fingerprint'
|
| 185 |
+
group = 'group'
|
| 186 |
+
testing = 'testing'
|
| 187 |
+
|
| 188 |
+
try:
|
| 189 |
+
PandasTools.AddMoleculeColumnToFrame(dataframe, smiles_column_name, molecule)
|
| 190 |
+
except:
|
| 191 |
+
print("Exception occurred during molecule generation...")
|
| 192 |
+
|
| 193 |
+
dataframe = dataframe.loc[dataframe[molecule].notnull()]
|
| 194 |
+
dataframe[fingerprint] = [compute_fingerprint(m) for m in dataframe[molecule]]
|
| 195 |
+
dataframe = dataframe.loc[dataframe[fingerprint].notnull()]
|
| 196 |
+
|
| 197 |
+
fingerprints = [Chem.GetMorganFingerprintAsBitVect(m, 2, nBits=2048) for m in dataframe[molecule]]
|
| 198 |
+
clusters = cluster_fingerprints(fingerprints, method=cluster_method)
|
| 199 |
+
|
| 200 |
+
dataframe.drop([molecule, fingerprint], axis=1, inplace=True)
|
| 201 |
+
|
| 202 |
+
last_training_index = int(math.ceil(len(dataframe) * fraction_to_train))
|
| 203 |
+
clustered = None
|
| 204 |
+
cluster_no = 0
|
| 205 |
+
mol_count = 0
|
| 206 |
+
|
| 207 |
+
for cluster in clusters:
|
| 208 |
+
cluster_no = cluster_no + 1
|
| 209 |
+
try:
|
| 210 |
+
one_cluster = dataframe.iloc[list(cluster)].copy()
|
| 211 |
+
except:
|
| 212 |
+
print("Wrong indexes in Cluster: %i, Molecules: %i" % (cluster_no, len(cluster)))
|
| 213 |
+
continue
|
| 214 |
+
|
| 215 |
+
one_cluster.loc[:, 'ClusterNo'] = cluster_no
|
| 216 |
+
one_cluster.loc[:, 'MolCount'] = len(cluster)
|
| 217 |
+
|
| 218 |
+
if (mol_count < last_training_index) or (cluster_no < 2):
|
| 219 |
+
one_cluster.loc[:, group] = 'training'
|
| 220 |
+
else:
|
| 221 |
+
one_cluster.loc[:, group] = testing
|
| 222 |
+
|
| 223 |
+
mol_count += len(cluster)
|
| 224 |
+
clustered = pd.concat([clustered, one_cluster], ignore_index=True)
|
| 225 |
+
|
| 226 |
+
if split_for_exact_fraction:
|
| 227 |
+
print("Adjusting test to train ratio. It may split one cluster")
|
| 228 |
+
clustered.loc[last_training_index + 1:, group] = testing
|
| 229 |
+
|
| 230 |
+
print("Clustering finished. Training set size is %i, Test set size is %i, Fraction %.2f" %
|
| 231 |
+
(len(clustered.loc[clustered[group] != testing]),
|
| 232 |
+
len(clustered.loc[clustered[group] == testing]),
|
| 233 |
+
len(clustered.loc[clustered[group] == testing]) / len(clustered)))
|
| 234 |
+
|
| 235 |
+
except KeyboardInterrupt:
|
| 236 |
+
print("Clustering interrupted.")
|
| 237 |
+
|
| 238 |
+
return clustered
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
def realistic_split(df, smile_col_index, frac_train, split_for_exact_frac=True, cluster_method = "Auto"):
|
| 242 |
+
return split_dataframe(df.copy(), smile_col_index, frac_train, split_for_exact_frac, cluster_method=cluster_method)
|
| 243 |
+
|
| 244 |
+
def split_df_into_train_and_test_sets(df):
|
| 245 |
+
df['group'] = df['group'].str.replace(' ', '_')
|
| 246 |
+
df['group'] = df['group'].str.lower()
|
| 247 |
+
train = df[df['group'] == 'training']
|
| 248 |
+
test = df[df['group'] == 'testing']
|
| 249 |
+
return train, test
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
formatted_df = pd.read_csv('IUPAC_pKa_formatted.csv')
|
| 253 |
+
smiles_index = 1 # Because smiles is in the second column
|
| 254 |
+
realistic = realistic_split(formatted_df.copy(), smiles_index, 0.75, split_for_exact_frac=True, cluster_method="Auto")
|
| 255 |
+
realistic_train, realistic_test = split_df_into_train_and_test_sets(realistic)
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
#8. Test and train datasets have been made
|
| 259 |
+
realistic_train.to_csv("IUPAC_pKa_train.csv", index=False)
|
| 260 |
+
realistic_test.to_csv("IUPAC_pKa_test.csv", index=False)
|
| 261 |
+
|
| 262 |
+
realistic_train.to_parquet('IUPAC_pKa_train.parquet', index=False)
|
| 263 |
+
realistic_test.to_parquet('IUPAC_pKa_test.parquet', index=False)
|