File size: 4,497 Bytes
9a94f7b
c4a5f13
9399f63
 
 
 
 
 
 
 
0415680
 
97630d9
 
 
 
9a94f7b
 
 
 
 
 
6e6a5dc
 
245f486
6e6a5dc
245f486
 
d5a32c1
245f486
9399f63
245f486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5a32c1
 
 
 
 
 
 
 
245f486
 
 
 
 
9399f63
245f486
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
---
configs:
- config_name: image2text_info
  data_files: image2text_info.csv
- config_name: image2text_option
  data_files: image2text_option.csv
- config_name: text2image_info
  data_files: text2image_info.csv
- config_name: text2image_option
  data_files: text2image_option.csv

license: cc-by-nc-sa-4.0
language:
- en
size_categories:
- 1K<n<10K
tags:
- benchmark
- mllm
- scientific
- cover
- live
task_categories:
- image-text-to-text
---

# MAC: A Live Benchmark for Multimodal Large Language Models in Scientific Understanding

[![arXiv](https://img.shields.io/badge/arXiv-2508.15802-b31b1b.svg)](https://arxiv.org/abs/2508.15802)
[![GitHub](https://img.shields.io/badge/GitHub-Repository-green)](https://github.com/mhjiang0408/MAC_Bench)
[![License: CC BY-NC-SA 4.0](https://img.shields.io/badge/License-CC%20BY--NC--SA%204.0-lightgrey.svg)](https://creativecommons.org/licenses/by-nc-sa/4.0/)

## πŸ“‹ Dataset Description

MAC is a comprehensive live benchmark designed to evaluate multimodal large language models (MLLMs) on scientific understanding tasks. The dataset focuses on scientific journal cover understanding, providing challenging testbeds for assessing visual-textual comprehension capabilities of MLLMs in academic domains.

### 🎯 Tasks

**1. Image-to-Text Understanding**
- **Input**: Scientific journal cover image
- **Task**: Select the most accurate textual description from 4 multiple-choice options
- **Question Format**: "Which of the following options best describe the cover image?"

**2. Text-to-Image Understanding** 
- **Input**: Journal cover story text description
- **Task**: Select the corresponding image from 4 visual options
- **Question Format**: "Which of the following options best describe the cover story?"

### πŸ“Š Dataset Statistics

| Attribute | Value |
|-----------|-------|
| **Source Journals** | Nature, Science, Cell, ACS journals |
| **Task Types** | 2 (Image2Text, Text2Image) |
| **Options per Question** | 4 (A, B, C, D) |
| **Languages** | English |
| **Image Format** | High-resolution PNG journal covers |


### πŸš€ Quick Start

#### Loading the Dataset

```python
from datasets import load_dataset
dataset = load_dataset("mhjiang0408/MAC_Bench")
```

#### Data Fields

**Image-to-Text Task Fields** (`image2text_info.csv`):

```python
{
    'journal': str,              # Source journal name (e.g., "NATURE BIOTECHNOLOGY")
    'id': str,                   # Unique identifier (e.g., "42_7")
    'question': str,             # Task question
    'cover_image': str,          # Path to cover image
    'answer': str,               # Correct answer ('A', 'B', 'C', 'D')
    'option_A': str,             # Option A text
    'option_A_path': str,        # Path to option A story file
    'option_A_embedding_name': str,  # Embedding method name
    'option_A_embedding_id': str,    # Embedding identifier
    # Similar fields for options B, C, D
    'split': str                 # Dataset split ('train', 'val', 'test')
}
```

### πŸ”§ Evaluation Framework

Use the official MAC_Bench evaluation toolkit:

```bash
# Clone repository
git clone https://github.com/mhjiang0408/MAC_Bench.git
cd MAC_Bench
./setup.sh
```


### πŸŽ“ Use Cases

- **MLLM Evaluation**: Systematic benchmarking of multimodal large language models
- **Scientific Vision-Language Research**: Cross-modal understanding in academic domains
- **Educational AI**: Development of AI systems for scientific content comprehension
- **Academic Publishing Tools**: Automated analysis of journal covers and content


### πŸ“š Citation

If you use the MAC dataset in your research, please cite our paper:

```bibtex
@misc{jiang2025maclivebenchmarkmultimodal,
      title={MAC: A Live Benchmark for Multimodal Large Language Models in Scientific Understanding}, 
      author={Mohan Jiang and Jin Gao and Jiahao Zhan and Dequan Wang},
      year={2025},
      eprint={2508.15802},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2508.15802}, 
}
```

### πŸ“„ License

This dataset is released under the CC BY-NC-SA 4.0 License. See [LICENSE](https://github.com/mhjiang0408/MAC_Bench/blob/main/LICENSE) for details.

### 🀝 Contributing

We welcome contributions to improve the dataset and benchmark:

1. Report issues via [GitHub Issues](https://github.com/mhjiang0408/MAC_Bench/issues)
2. Submit pull requests for improvements
3. Join discussions in our [GitHub Discussions](https://github.com/mhjiang0408/MAC_Bench/discussions)