--- dataset_info: features: - name: sex dtype: string - name: duration dtype: float64 - name: transcript dtype: string - name: audio dtype: audio - name: id dtype: int64 splits: - name: train num_bytes: 13262971934.88 num_examples: 65120 - name: validation num_bytes: 1164972031.672 num_examples: 5663 - name: test num_bytes: 2537956206.612 num_examples: 12492 download_size: 14740834520 dataset_size: 16965900173.163998 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* --- [![Datasets](https://img.shields.io/badge/dataset-MDCC-blue)](https://huggingface.co/datasets/ming030890/mdcc) # MDCC: A New Cantonese ASR Dataset ## 📦 Update [1 Feb, 2024] The `.wav` data of the dataset is available here: 🔗 [Google Drive Link](https://drive.google.com/file/d/1epfYMMhXdBKA6nxPgUugb2Uj4DllSxkn/view?usp=drive_link) **Note:** For research purposes only. --- ## 📖 Overview MDCC (“**M**ulti-**D**omain **C**antonese **C**orpus”) is a large-scale Cantonese automatic speech recognition (ASR) dataset compiled from multiple domains. It provides: - **Audio**: `.wav` recordings of spontaneous and read speech - **Transcript**: UTF‑8 plain‑text transcripts - **Speaker metadata**: sex - **Duration**: audio length in seconds This repo contains metadata files and a conversion script to turn the data into a Hugging Face-compatible dataset. Unlike ming030890/cantonese_asr_eval_mdcc_long, this repo only keeps audio segments that are longer than 8 seconds. --- ## 📝 Paper & Citation Tiezheng Yu, Rita Frieske, Peng Xu, Samuel Cahyawijaya, Cheuk Tung Shadow Yiu, Holy Lovenia, Wenliang Dai, Elham J. Barezi, Qifeng Chen, Xiaojuan Ma, Bertram E. Shi & Pascale Fung **“Automatic Speech Recognition Datasets in Cantonese: A Survey and New Dataset”** 📄 [arXiv:2201.02419](https://arxiv.org/pdf/2201.02419.pdf) ```bibtex @misc{yu2022automatic, title = {Automatic Speech Recognition Datasets in Cantonese: A Survey and New Dataset}, author = {Tiezheng Yu and Rita Frieske and Peng Xu and Samuel Cahyawijaya and Cheuk Tung Shadow Yiu and Holy Lovenia and Wenliang Dai and Elham J. Barezi and Qifeng Chen and Xiaojuan Ma and Bertram E. Shi and Pascale Fung}, year = {2022}, eprint = {2201.02419}, archivePrefix= {arXiv}, primaryClass = {cs.CL} } ``` --- ## 🚀 How to Load on Hugging Face ```python from datasets import load_dataset ds = load_dataset("ming030890/cantonese_asr_eval_mdcc_long ") print(ds["test"][0]) ``` Example output: ```python { 'audio': { 'path': '/path/to/audio.wav', 'array': [...], 'sampling_rate': 16000 }, 'transcript': '你好,歡迎收聽…', 'sex': 'female', 'duration': 3.08 } ``` --- ## 🔓 License & Access 1. Review the `MDCC_LICENSE` file in this repo. 2. Sign it and send to **chinatysonyu@gmail.com**. 3. Then download the dataset here: 🔗 [Google Drive Folder](https://drive.google.com/drive/folders/1HhNqrPpUTtjsJ0wZQCSKqet7ftmWb6eI?usp=sharing) --- ## ✅ Checkpoints Download pretrained models here: 🔗 [Checkpoints Google Drive](https://drive.google.com/drive/folders/1BpGGOfr4IDYv0cWTowsDKkVmud7tNYzy?usp=sharing) --- ## ⚠️ Disclaimer I am **not the original author** of the dataset or the research paper. This repo only provides a Hugging Face-compatible version of the public MDCC data. For the original codebase and documentation, refer to: 🔗 https://github.com/HLTCHKUST/cantonese-asr