| title
				 stringclasses 1
				value | text
				 stringlengths 46 1.11M | id
				 stringlengths 27 30 | 
|---|---|---|
| 
	sympy/utilities/lambdify.py/_EvaluatorPrinter/_preprocess
class _EvaluatorPrinter:    def _preprocess(self, args, expr):
        """Preprocess args, expr to replace arguments that do not map
        to valid Python identifiers.
        Returns string form of args, and updated expr.
        """
        from sympy import Dummy, Symbol, Function, flatten
        from sympy.matrices import DeferredVector
        dummify = self._dummify
        # Args of type Dummy can cause name collisions with args
        # of type Symbol.  Force dummify of everything in this
        # situation.
        if not dummify:
            dummify = any(isinstance(arg, Dummy) for arg in flatten(args))
        argstrs = []
        for arg in args:
            if iterable(arg):
                nested_argstrs, expr = self._preprocess(arg, expr)
                argstrs.append(nested_argstrs)
            elif isinstance(arg, DeferredVector):
                argstrs.append(str(arg))
            elif isinstance(arg, Symbol):
                argrep = self._argrepr(arg)
                if dummify or not self._is_safe_ident(argrep):
                    dummy = Dummy()
                    argstrs.append(self._argrepr(dummy))
                    expr = self._subexpr(expr, {arg: dummy})
                else:
                    argstrs.append(argrep)
            elif isinstance(arg, Function):
                dummy = Dummy()
                argstrs.append(self._argrepr(dummy))
                expr = self._subexpr(expr, {arg: dummy})
            else:
                argstrs.append(str(arg))
        return argstrs, expr | 
	apositive_train_query0_00000 | |
| 
	examples/all.py/__import__
def __import__(name, globals=None, locals=None, fromlist=None):
    """An alternative to the import function so that we can import
    modules defined as strings.
    This code was taken from: http://docs.python.org/lib/examples-imp.html
    """
    # Fast path: see if the module has already been imported.
    try:
        return sys.modules[name]
    except KeyError:
        pass
    # If any of the following calls raises an exception,
    # there's a problem we can't handle -- let the caller handle it.
    module_name = name.split('.')[-1]
    module_path = os.path.join(EXAMPLE_DIR, *name.split('.')[:-1])
    fp, pathname, description = imp.find_module(module_name, [module_path])
    try:
        return imp.load_module(module_name, fp, pathname, description)
    finally:
        # Since we may exit via an exception, close fp explicitly.
        if fp:
            fp.close() | 
	negative_train_query0_00000 | |
| 
	examples/all.py/load_example_module
def load_example_module(example):
    """Loads modules based upon the given package name"""
    mod = __import__(example)
    return mod | 
	negative_train_query0_00001 | |
| 
	examples/all.py/run_examples
def run_examples(windowed=False, quiet=False, summary=True):
    """Run all examples in the list of modules.
    Returns a boolean value indicating whether all the examples were
    successful.
    """
    successes = []
    failures = []
    examples = TERMINAL_EXAMPLES
    if windowed:
        examples += WINDOWED_EXAMPLES
    if quiet:
        from sympy.utilities.runtests import PyTestReporter
        reporter = PyTestReporter()
        reporter.write("Testing Examples\n")
        reporter.write("-" * reporter.terminal_width)
    else:
        reporter = None
    for example in examples:
        if run_example(example, reporter=reporter):
            successes.append(example)
        else:
            failures.append(example)
    if summary:
        show_summary(successes, failures, reporter=reporter)
    return len(failures) == 0 | 
	negative_train_query0_00002 | |
| 
	examples/all.py/run_example
def run_example(example, reporter=None):
    """Run a specific example.
    Returns a boolean value indicating whether the example was successful.
    """
    if reporter:
        reporter.write(example)
    else:
        print("=" * 79)
        print("Running: ", example)
    try:
        mod = load_example_module(example)
        if reporter:
            suppress_output(mod.main)
            reporter.write("[PASS]", "Green", align="right")
        else:
            mod.main()
        return True
    except KeyboardInterrupt as e:
        raise e
    except:
        if reporter:
            reporter.write("[FAIL]", "Red", align="right")
        traceback.print_exc()
        return False | 
	negative_train_query0_00003 | |
| 
	examples/all.py/suppress_output
def suppress_output(fn):
    """Suppresses the output of fn on sys.stdout."""
    save_stdout = sys.stdout
    try:
        sys.stdout = DummyFile()
        fn()
    finally:
        sys.stdout = save_stdout | 
	negative_train_query0_00004 | |
| 
	examples/all.py/show_summary
def show_summary(successes, failures, reporter=None):
    """Shows a summary detailing which examples were successful and which failed."""
    if reporter:
        reporter.write("-" * reporter.terminal_width)
        if failures:
            reporter.write("FAILED:\n", "Red")
            for example in failures:
                reporter.write("  %s\n" % example)
        else:
            reporter.write("ALL EXAMPLES PASSED\n", "Green")
    else:
        if successes:
            print("SUCCESSFUL: ", file=sys.stderr)
            for example in successes:
                print("  -", example, file=sys.stderr)
        else:
            print("NO SUCCESSFUL EXAMPLES", file=sys.stderr)
        if failures:
            print("FAILED: ", file=sys.stderr)
            for example in failures:
                print("  -", example, file=sys.stderr)
        else:
            print("NO FAILED EXAMPLES", file=sys.stderr) | 
	negative_train_query0_00005 | |
| 
	examples/all.py/main
def main(*args, **kws):
    """Main script runner"""
    parser = optparse.OptionParser()
    parser.add_option('-w', '--windowed', action="store_true", dest="windowed",
        help="also run examples requiring windowed environment")
    parser.add_option('-q', '--quiet', action="store_true", dest="quiet",
        help="runs examples in 'quiet mode' suppressing example output and \
              showing simple status messages.")
    parser.add_option('--no-summary', action="store_true", dest="no_summary",
        help="hides the summary at the end of testing the examples")
    (options, _) = parser.parse_args()
    return 0 if run_examples(windowed=options.windowed, quiet=options.quiet,
                             summary=not options.no_summary) else 1 | 
	negative_train_query0_00006 | |
| 
	examples/all.py/DummyFile/write
class DummyFile:    def write(self, x):
        pass | 
	negative_train_query0_00007 | |
| 
	examples/intermediate/vandermonde.py/symbol_gen
def symbol_gen(sym_str):
    """Symbol generator
    Generates sym_str_n where n is the number of times the generator
    has been called.
    """
    n = 0
    while True:
        yield Symbol("%s_%d" % (sym_str, n))
        n += 1 | 
	negative_train_query0_00008 | |
| 
	examples/intermediate/vandermonde.py/comb_w_rep
def comb_w_rep(n, k):
    """Combinations with repetition
    Returns the list of k combinations with repetition from n objects.
    """
    if k == 0:
        return [[]]
    combs = [[i] for i in range(n)]
    for i in range(k - 1):
        curr = []
        for p in combs:
            for m in range(p[-1], n):
                curr.append(p + [m])
        combs = curr
    return combs | 
	negative_train_query0_00009 | |
| 
	examples/intermediate/vandermonde.py/vandermonde
def vandermonde(order, dim=1, syms='a b c d'):
    """Computes a Vandermonde matrix of given order and dimension.
    Define syms to give beginning strings for temporary variables.
    Returns the Matrix, the temporary variables, and the terms for the
    polynomials.
    """
    syms = syms.split()
    n = len(syms)
    if n < dim:
        new_syms = []
        for i in range(dim - n):
            j, rem = divmod(i, n)
            new_syms.append(syms[rem] + str(j))
        syms.extend(new_syms)
    terms = []
    for i in range(order + 1):
        terms.extend(comb_w_rep(dim, i))
    rank = len(terms)
    V = zeros(rank)
    generators = [symbol_gen(syms[i]) for i in range(dim)]
    all_syms = []
    for i in range(rank):
        row_syms = [next(g) for g in generators]
        all_syms.append(row_syms)
        for j, term in enumerate(terms):
            v_entry = 1
            for k in term:
                v_entry *= row_syms[k]
            V[i*rank + j] = v_entry
    return V, all_syms, terms | 
	negative_train_query0_00010 | |
| 
	examples/intermediate/vandermonde.py/gen_poly
def gen_poly(points, order, syms):
    """Generates a polynomial using a Vandermonde system"""
    num_pts = len(points)
    if num_pts == 0:
        raise ValueError("Must provide points")
    dim = len(points[0]) - 1
    if dim > len(syms):
        raise ValueError("Must provide at least %d symbols for the polynomial" % dim)
    V, tmp_syms, terms = vandermonde(order, dim)
    if num_pts < V.shape[0]:
        raise ValueError(
            "Must provide %d points for order %d, dimension "
            "%d polynomial, given %d points" %
            (V.shape[0], order, dim, num_pts))
    elif num_pts > V.shape[0]:
        print("gen_poly given %d points but only requires %d, "\
            "continuing using the first %d points" % \
            (num_pts, V.shape[0], V.shape[0]))
        num_pts = V.shape[0]
    subs_dict = {}
    for j in range(dim):
        for i in range(num_pts):
            subs_dict[tmp_syms[i][j]] = points[i][j]
    V_pts = V.subs(subs_dict)
    V_inv = V_pts.inv()
    coeffs = V_inv.multiply(Matrix([points[i][-1] for i in range(num_pts)]))
    f = 0
    for j, term in enumerate(terms):
        t = 1
        for k in term:
            t *= syms[k]
        f += coeffs[j]*t
    return f | 
	negative_train_query0_00011 | |
| 
	examples/intermediate/vandermonde.py/main
def main():
    order = 2
    V, tmp_syms, _ = vandermonde(order)
    print("Vandermonde matrix of order 2 in 1 dimension")
    pprint(V)
    print('-'*79)
    print("Computing the determinant and comparing to \sum_{0<i<j<=3}(a_j - a_i)")
    det_sum = 1
    for j in range(order + 1):
        for i in range(j):
            det_sum *= (tmp_syms[j][0] - tmp_syms[i][0])
    print("""
    det(V) = %(det)s
    \sum   = %(sum)s
           = %(sum_expand)s
    """ % {"det": V.det(),
            "sum": det_sum,
            "sum_expand": det_sum.expand(),
          })
    print('-'*79)
    print("Polynomial fitting with a Vandermonde Matrix:")
    x, y, z = symbols('x,y,z')
    points = [(0, 3), (1, 2), (2, 3)]
    print("""
    Quadratic function, represented by 3 points:
       points = %(pts)s
       f = %(f)s
    """ % {"pts": points,
            "f": gen_poly(points, 2, [x]),
          })
    points = [(0, 1, 1), (1, 0, 0), (1, 1, 0), (Rational(1, 2), 0, 0),
              (0, Rational(1, 2), 0), (Rational(1, 2), Rational(1, 2), 0)]
    print("""
    2D Quadratic function, represented by 6 points:
       points = %(pts)s
       f = %(f)s
    """ % {"pts": points,
            "f": gen_poly(points, 2, [x, y]),
          })
    points = [(0, 1, 1, 1), (1, 1, 0, 0), (1, 0, 1, 0), (1, 1, 1, 1)]
    print("""
    3D linear function, represented by 4 points:
       points = %(pts)s
       f = %(f)s
    """ % {"pts": points,
            "f": gen_poly(points, 1, [x, y, z]),
          }) | 
	negative_train_query0_00012 | |
| 
	examples/intermediate/infinite_1d_box.py/X_n
def X_n(n, a, x):
    """
    Returns the wavefunction X_{n} for an infinite 1D box
    ``n``
        the "principal" quantum number. Corresponds to the number of nodes in
        the wavefunction.  n >= 0
    ``a``
        width of the well. a > 0
    ``x``
        x coordinate.
    """
    n, a, x = map(S, [n, a, x])
    C = sqrt(2 / a)
    return C * sin(pi * n * x / a) | 
	negative_train_query0_00013 | |
| 
	examples/intermediate/infinite_1d_box.py/E_n
def E_n(n, a, mass):
    """
    Returns the Energy psi_{n} for a 1d potential hole with infinity borders
    ``n``
        the "principal" quantum number. Corresponds to the number of nodes in
        the wavefunction.  n >= 0
    ``a``
        width of the well. a > 0
    ``mass``
        mass.
    """
    return ((n * pi / a)**2) / mass | 
	negative_train_query0_00014 | |
| 
	examples/intermediate/infinite_1d_box.py/energy_corrections
def energy_corrections(perturbation, n, a=10, mass=0.5):
    """
    Calculating first two order corrections due to perturbation theory and
    returns tuple where zero element is unperturbated energy, and two second
    is corrections
    ``n``
        the "nodal" quantum number. Corresponds to the number of nodes in the
        wavefunction.  n >= 0
    ``a``
        width of the well. a > 0
    ``mass``
        mass.
    """
    x, _a = var("x _a")
    Vnm = lambda n, m, a: Integral(X_n(n, a, x) * X_n(m, a, x)
        * perturbation.subs({_a: a}), (x, 0, a)).n()
    # As we know from theory for V0*r/a we will just V(n, n-1) and V(n, n+1)
    #   wouldn't equals zero
    return (E_n(n, a, mass).evalf(),
            Vnm(n, n, a).evalf(),
            (Vnm(n, n - 1, a)**2/(E_n(n, a, mass) - E_n(n - 1, a, mass))
           + Vnm(n, n + 1, a)**2/(E_n(n, a, mass) - E_n(n + 1, a, mass))).evalf()) | 
	negative_train_query0_00015 | |
| 
	examples/intermediate/infinite_1d_box.py/main
def main():
    print()
    print("Applying perturbation theory to calculate the ground state energy")
    print("of the infinite 1D box of width ``a`` with a perturbation")
    print("which is linear in ``x``, up to second order in perturbation.")
    print()
    x, _a = var("x _a")
    perturbation = .1 * x / _a
    E1 = energy_corrections(perturbation, 1)
    print("Energy for first term (n=1):")
    print("E_1^{(0)} = ", E1[0])
    print("E_1^{(1)} = ", E1[1])
    print("E_1^{(2)} = ", E1[2])
    print()
    E2 = energy_corrections(perturbation, 2)
    print("Energy for second term (n=2):")
    print("E_2^{(0)} = ", E2[0])
    print("E_2^{(1)} = ", E2[1])
    print("E_2^{(2)} = ", E2[2])
    print()
    E3 = energy_corrections(perturbation, 3)
    print("Energy for third term (n=3):")
    print("E_3^{(0)} = ", E3[0])
    print("E_3^{(1)} = ", E3[1])
    print("E_3^{(2)} = ", E3[2])
    print() | 
	negative_train_query0_00016 | |
| 
	examples/intermediate/trees.py/T
def T(x):
    return x + x**2 + 2*x**3 + 4*x**4 + 9*x**5 + 20*x**6 + 48 * x**7 + \
        115*x**8 + 286*x**9 + 719*x**10 | 
	negative_train_query0_00017 | |
| 
	examples/intermediate/trees.py/A
def A(x):
    return 1 + T(x) - T(x)**2/2 + T(x**2)/2 | 
	negative_train_query0_00018 | |
| 
	examples/intermediate/trees.py/main
def main():
    x = Symbol("x")
    s = Poly(A(x), x)
    num = list(reversed(s.coeffs()))[:11]
    print(s.as_expr())
    print(num) | 
	negative_train_query0_00019 | |
| 
	examples/intermediate/differential_equations.py/main
def main():
    x = Symbol("x")
    f = Function("f")
    eq = Eq(f(x).diff(x), f(x))
    print("Solution for ", eq, " : ", dsolve(eq, f(x)))
    eq = Eq(f(x).diff(x, 2), -f(x))
    print("Solution for ", eq, " : ", dsolve(eq, f(x)))
    eq = Eq(x**2*f(x).diff(x), -3*x*f(x) + sin(x)/x)
    print("Solution for ", eq, " : ", dsolve(eq, f(x))) | 
	negative_train_query0_00020 | |
| 
	examples/intermediate/print_gtk.py/main
def main():
    x = Symbol('x')
    example_limit = Limit(sin(x)/x, x, 0)
    print_gtk(example_limit)
    example_integral = Integral(x, (x, 0, 1))
    print_gtk(example_integral) | 
	negative_train_query0_00021 | |
| 
	examples/intermediate/coupled_cluster.py/get_CC_operators
def get_CC_operators():
    """
    Returns a tuple (T1,T2) of unique operators.
    """
    i = symbols('i', below_fermi=True, cls=Dummy)
    a = symbols('a', above_fermi=True, cls=Dummy)
    t_ai = AntiSymmetricTensor('t', (a,), (i,))
    ai = NO(Fd(a)*F(i))
    i, j = symbols('i,j', below_fermi=True, cls=Dummy)
    a, b = symbols('a,b', above_fermi=True, cls=Dummy)
    t_abij = AntiSymmetricTensor('t', (a, b), (i, j))
    abji = NO(Fd(a)*Fd(b)*F(j)*F(i))
    T1 = t_ai*ai
    T2 = Rational(1, 4)*t_abij*abji
    return (T1, T2) | 
	negative_train_query0_00022 | |
| 
	examples/intermediate/coupled_cluster.py/main
def main():
    print()
    print("Calculates the Coupled-Cluster energy- and amplitude equations")
    print("See 'An Introduction to Coupled Cluster Theory' by")
    print("T. Daniel Crawford and Henry F. Schaefer III")
    print("Reference to a Lecture Series: http://vergil.chemistry.gatech.edu/notes/sahan-cc-2010.pdf")
    print()
    # setup hamiltonian
    p, q, r, s = symbols('p,q,r,s', cls=Dummy)
    f = AntiSymmetricTensor('f', (p,), (q,))
    pr = NO((Fd(p)*F(q)))
    v = AntiSymmetricTensor('v', (p, q), (r, s))
    pqsr = NO(Fd(p)*Fd(q)*F(s)*F(r))
    H = f*pr + Rational(1, 4)*v*pqsr
    print("Using the hamiltonian:", latex(H))
    print("Calculating 4 nested commutators")
    C = Commutator
    T1, T2 = get_CC_operators()
    T = T1 + T2
    print("commutator 1...")
    comm1 = wicks(C(H, T))
    comm1 = evaluate_deltas(comm1)
    comm1 = substitute_dummies(comm1)
    T1, T2 = get_CC_operators()
    T = T1 + T2
    print("commutator 2...")
    comm2 = wicks(C(comm1, T))
    comm2 = evaluate_deltas(comm2)
    comm2 = substitute_dummies(comm2)
    T1, T2 = get_CC_operators()
    T = T1 + T2
    print("commutator 3...")
    comm3 = wicks(C(comm2, T))
    comm3 = evaluate_deltas(comm3)
    comm3 = substitute_dummies(comm3)
    T1, T2 = get_CC_operators()
    T = T1 + T2
    print("commutator 4...")
    comm4 = wicks(C(comm3, T))
    comm4 = evaluate_deltas(comm4)
    comm4 = substitute_dummies(comm4)
    print("construct Hausdorff expansion...")
    eq = H + comm1 + comm2/2 + comm3/6 + comm4/24
    eq = eq.expand()
    eq = evaluate_deltas(eq)
    eq = substitute_dummies(eq, new_indices=True,
            pretty_indices=pretty_dummies_dict)
    print("*********************")
    print()
    print("extracting CC equations from full Hbar")
    i, j, k, l = symbols('i,j,k,l', below_fermi=True)
    a, b, c, d = symbols('a,b,c,d', above_fermi=True)
    print()
    print("CC Energy:")
    print(latex(wicks(eq, simplify_dummies=True,
        keep_only_fully_contracted=True)))
    print()
    print("CC T1:")
    eqT1 = wicks(NO(Fd(i)*F(a))*eq, simplify_kronecker_deltas=True, keep_only_fully_contracted=True)
    eqT1 = substitute_dummies(eqT1)
    print(latex(eqT1))
    print()
    print("CC T2:")
    eqT2 = wicks(NO(Fd(i)*Fd(j)*F(b)*F(a))*eq, simplify_dummies=True, keep_only_fully_contracted=True, simplify_kronecker_deltas=True)
    P = PermutationOperator
    eqT2 = simplify_index_permutations(eqT2, [P(a, b), P(i, j)])
    print(latex(eqT2)) | 
	negative_train_query0_00023 | |
| 
	examples/intermediate/partial_differential_eqs.py/main
def main():
    r, phi, theta = symbols("r,phi,theta")
    Xi = Function('Xi')
    R, Phi, Theta, u = map(Function, ['R', 'Phi', 'Theta', 'u'])
    C1, C2 = symbols('C1,C2')
    pprint("Separation of variables in Laplace equation in spherical coordinates")
    pprint("Laplace equation in spherical coordinates:")
    eq = Eq(D(Xi(r, phi, theta), r, 2) + 2/r * D(Xi(r, phi, theta), r) +
            1/(r**2 * sin(phi)**2) * D(Xi(r, phi, theta), theta, 2) +
            cos(phi)/(r**2 * sin(phi)) * D(Xi(r, phi, theta), phi) +
            1/r**2 * D(Xi(r, phi, theta), phi, 2))
    pprint(eq)
    pprint("We can either separate this equation in regards with variable r:")
    res_r = pde_separate(eq, Xi(r, phi, theta), [R(r), u(phi, theta)])
    pprint(res_r)
    pprint("Or separate it in regards of theta:")
    res_theta = pde_separate(eq, Xi(r, phi, theta), [Theta(theta), u(r, phi)])
    pprint(res_theta)
    res_phi = pde_separate(eq, Xi(r, phi, theta), [Phi(phi), u(r, theta)])
    pprint("But we cannot separate it in regards of variable phi: ")
    pprint("Result: %s" % res_phi)
    pprint("\n\nSo let's make theta dependent part equal with -C1:")
    eq_theta = Eq(res_theta[0], -C1)
    pprint(eq_theta)
    pprint("\nThis also means that second part is also equal to -C1:")
    eq_left = Eq(res_theta[1], -C1)
    pprint(eq_left)
    pprint("\nLets try to separate phi again :)")
    res_theta = pde_separate(eq_left, u(r, phi), [Phi(phi), R(r)])
    pprint("\nThis time it is successful:")
    pprint(res_theta)
    pprint("\n\nSo our final equations with separated variables are:")
    pprint(eq_theta)
    pprint(Eq(res_theta[0], C2))
    pprint(Eq(res_theta[1], C2)) | 
	negative_train_query0_00024 | |
| 
	examples/intermediate/sample.py/sample2d
def sample2d(f, x_args):
    """
    Samples a 2d function f over specified intervals and returns two
    arrays (X, Y) suitable for plotting with matlab (matplotlib)
    syntax. See examples\mplot2d.py.
    f is a function of one variable, such as x**2.
    x_args is an interval given in the form (var, min, max, n)
    """
    try:
        f = sympify(f)
    except SympifyError:
        raise ValueError("f could not be interpretted as a SymPy function")
    try:
        x, x_min, x_max, x_n = x_args
    except AttributeError:
        raise ValueError("x_args must be a tuple of the form (var, min, max, n)")
    x_l = float(x_max - x_min)
    x_d = x_l/float(x_n)
    X = np.arange(float(x_min), float(x_max) + x_d, x_d)
    Y = np.empty(len(X))
    for i in range(len(X)):
        try:
            Y[i] = float(f.subs(x, X[i]))
        except TypeError:
            Y[i] = None
    return X, Y | 
	negative_train_query0_00025 | |
| 
	examples/intermediate/sample.py/sample3d
def sample3d(f, x_args, y_args):
    """
    Samples a 3d function f over specified intervals and returns three
    2d arrays (X, Y, Z) suitable for plotting with matlab (matplotlib)
    syntax. See examples\mplot3d.py.
    f is a function of two variables, such as x**2 + y**2.
    x_args and y_args are intervals given in the form (var, min, max, n)
    """
    x, x_min, x_max, x_n = None, None, None, None
    y, y_min, y_max, y_n = None, None, None, None
    try:
        f = sympify(f)
    except SympifyError:
        raise ValueError("f could not be interpreted as a SymPy function")
    try:
        x, x_min, x_max, x_n = x_args
        y, y_min, y_max, y_n = y_args
    except AttributeError:
        raise ValueError("x_args and y_args must be tuples of the form (var, min, max, intervals)")
    x_l = float(x_max - x_min)
    x_d = x_l/float(x_n)
    x_a = np.arange(float(x_min), float(x_max) + x_d, x_d)
    y_l = float(y_max - y_min)
    y_d = y_l/float(y_n)
    y_a = np.arange(float(y_min), float(y_max) + y_d, y_d)
    def meshgrid(x, y):
        """
        Taken from matplotlib.mlab.meshgrid.
        """
        x = np.array(x)
        y = np.array(y)
        numRows, numCols = len(y), len(x)
        x.shape = 1, numCols
        X = np.repeat(x, numRows, 0)
        y.shape = numRows, 1
        Y = np.repeat(y, numCols, 1)
        return X, Y
    X, Y = np.meshgrid(x_a, y_a)
    Z = np.ndarray((len(X), len(X[0])))
    for j in range(len(X)):
        for k in range(len(X[0])):
            try:
                Z[j][k] = float(f.subs(x, X[j][k]).subs(y, Y[j][k]))
            except (TypeError, NotImplementedError):
                Z[j][k] = 0
    return X, Y, Z | 
	negative_train_query0_00026 | |
| 
	examples/intermediate/sample.py/sample
def sample(f, *var_args):
    """
    Samples a 2d or 3d function over specified intervals and returns
    a dataset suitable for plotting with matlab (matplotlib) syntax.
    Wrapper for sample2d and sample3d.
    f is a function of one or two variables, such as x**2.
    var_args are intervals for each variable given in the form (var, min, max, n)
    """
    if len(var_args) == 1:
        return sample2d(f, var_args[0])
    elif len(var_args) == 2:
        return sample3d(f, var_args[0], var_args[1])
    else:
        raise ValueError("Only 2d and 3d sampling are supported at this time.") | 
	negative_train_query0_00027 | |
| 
	examples/intermediate/sample.py/meshgrid
    def meshgrid(x, y):
        """
        Taken from matplotlib.mlab.meshgrid.
        """
        x = np.array(x)
        y = np.array(y)
        numRows, numCols = len(y), len(x)
        x.shape = 1, numCols
        X = np.repeat(x, numRows, 0)
        y.shape = numRows, 1
        Y = np.repeat(y, numCols, 1)
        return X, Y | 
	negative_train_query0_00028 | |
| 
	examples/intermediate/mplot3d.py/mplot3d
def mplot3d(f, var1, var2, show=True):
    """
    Plot a 3d function using matplotlib/Tk.
    """
    import warnings
    warnings.filterwarnings("ignore", "Could not match \S")
    p = import_module('pylab')
    # Try newer version first
    p3 = import_module('mpl_toolkits.mplot3d',
        __import__kwargs={'fromlist': ['something']}) or import_module('matplotlib.axes3d')
    if not p or not p3:
        sys.exit("Matplotlib is required to use mplot3d.")
    x, y, z = sample(f, var1, var2)
    fig = p.figure()
    ax = p3.Axes3D(fig)
    # ax.plot_surface(x, y, z, rstride=2, cstride=2)
    ax.plot_wireframe(x, y, z)
    ax.set_xlabel('X')
    ax.set_ylabel('Y')
    ax.set_zlabel('Z')
    if show:
        p.show() | 
	negative_train_query0_00029 | |
| 
	examples/intermediate/mplot3d.py/main
def main():
    x = Symbol('x')
    y = Symbol('y')
    mplot3d(x**2 - y**2, (x, -10.0, 10.0, 20), (y, -10.0, 10.0, 20)) | 
	negative_train_query0_00030 | |
| 
	examples/intermediate/mplot2d.py/mplot2d
def mplot2d(f, var, show=True):
    """
    Plot a 2d function using matplotlib/Tk.
    """
    import warnings
    warnings.filterwarnings("ignore", "Could not match \S")
    p = import_module('pylab')
    if not p:
        sys.exit("Matplotlib is required to use mplot2d.")
    if not is_sequence(f):
        f = [f, ]
    for f_i in f:
        x, y = sample(f_i, var)
        p.plot(x, y)
    p.draw()
    if show:
        p.show() | 
	negative_train_query0_00031 | |
| 
	examples/intermediate/mplot2d.py/main
def main():
    x = Symbol('x')
    # mplot2d(log(x), (x, 0, 2, 100))
    # mplot2d([sin(x), -sin(x)], (x, float(-2*pi), float(2*pi), 50))
    mplot2d([sqrt(x), -sqrt(x), sqrt(-x), -sqrt(-x)], (x, -40.0, 40.0, 80)) | 
	negative_train_query0_00032 | |
| 
	examples/beginner/limits_examples.py/sqrt3
def sqrt3(x):
    return x**Rational(1, 3) | 
	negative_train_query0_00033 | |
| 
	examples/beginner/limits_examples.py/show
def show(computed, correct):
    print("computed:", computed, "correct:", correct) | 
	negative_train_query0_00034 | |
| 
	examples/beginner/limits_examples.py/main
def main():
    x = Symbol("x")
    show( limit(sqrt(x**2 - 5*x + 6) - x, x, oo), -Rational(5)/2 )
    show( limit(x*(sqrt(x**2 + 1) - x), x, oo), Rational(1)/2 )
    show( limit(x - sqrt(x**3 - 1), x, oo), Rational(0) )
    show( limit(log(1 + exp(x))/x, x, -oo), Rational(0) )
    show( limit(log(1 + exp(x))/x, x, oo), Rational(1) )
    show( limit(sin(3*x)/x, x, 0), Rational(3) )
    show( limit(sin(5*x)/sin(2*x), x, 0), Rational(5)/2 )
    show( limit(((x - 1)/(x + 1))**x, x, oo), exp(-2)) | 
	negative_train_query0_00035 | |
| 
	examples/beginner/series.py/main
def main():
    x = Symbol('x')
    e = 1/cos(x)
    print('')
    print("Series for sec(x):")
    print('')
    pprint(e.series(x, 0, 10))
    print("\n")
    e = 1/sin(x)
    print("Series for csc(x):")
    print('')
    pprint(e.series(x, 0, 4))
    print('') | 
	negative_train_query0_00036 | |
| 
	examples/beginner/precision.py/main
def main():
    x = Pow(2, 50, evaluate=False)
    y = Pow(10, -50, evaluate=False)
    # A large, unevaluated expression
    m = Mul(x, y, evaluate=False)
    # Evaluating the expression
    e = S(2)**50/S(10)**50
    print("%s == %s" % (m, e)) | 
	negative_train_query0_00037 | |
| 
	examples/beginner/plotting_nice_plot.py/main
def main():
    fun1 = cos(x)*sin(y)
    fun2 = sin(x)*sin(y)
    fun3 = cos(y) + log(tan(y/2)) + 0.2*x
    PygletPlot(fun1, fun2, fun3, [x, -0.00, 12.4, 40], [y, 0.1, 2, 40]) | 
	negative_train_query0_00038 | |
| 
	examples/beginner/print_pretty.py/main
def main():
    x = Symbol("x")
    y = Symbol("y")
    pprint( x**x )
    print('\n')  # separate with two blank likes
    pprint(x**2 + y + x)
    print('\n')
    pprint(sin(x)**x)
    print('\n')
    pprint( sin(x)**cos(x) )
    print('\n')
    pprint( sin(x)/(cos(x)**2 * x**x + (2*y)) )
    print('\n')
    pprint( sin(x**2 + exp(x)) )
    print('\n')
    pprint( sqrt(exp(x)) )
    print('\n')
    pprint( sqrt(sqrt(exp(x))) )
    print('\n')
    pprint( (1/cos(x)).series(x, 0, 10) )
    print('\n') | 
	negative_train_query0_00039 | |
| 
	examples/beginner/expansion.py/main
def main():
    a = Symbol('a')
    b = Symbol('b')
    e = (a + b)**5
    print("\nExpression:")
    pprint(e)
    print('\nExpansion of the above expression:')
    pprint(e.expand())
    print() | 
	negative_train_query0_00040 | |
| 
	examples/beginner/differentiation.py/main
def main():
    a = Symbol('a')
    b = Symbol('b')
    e = (a + 2*b)**5
    print("\nExpression : ")
    print()
    pprint(e)
    print("\n\nDifferentiating w.r.t. a:")
    print()
    pprint(e.diff(a))
    print("\n\nDifferentiating w.r.t. b:")
    print()
    pprint(e.diff(b))
    print("\n\nSecond derivative of the above result w.r.t. a:")
    print()
    pprint(e.diff(b).diff(a, 2))
    print("\n\nExpanding the above result:")
    print()
    pprint(e.expand().diff(b).diff(a, 2))
    print() | 
	negative_train_query0_00041 | |
| 
	examples/beginner/functions.py/main
def main():
    a = Symbol('a')
    b = Symbol('b')
    e = log((a + b)**5)
    print()
    pprint(e)
    print('\n')
    e = exp(e)
    pprint(e)
    print('\n')
    e = log(exp((a + b)**5))
    pprint(e)
    print | 
	negative_train_query0_00042 | |
| 
	examples/beginner/substitution.py/main
def main():
    x = sympy.Symbol('x')
    y = sympy.Symbol('y')
    e = 1/sympy.cos(x)
    print()
    pprint(e)
    print('\n')
    pprint(e.subs(sympy.cos(x), y))
    print('\n')
    pprint(e.subs(sympy.cos(x), y).subs(y, x**2))
    e = 1/sympy.log(x)
    e = e.subs(x, sympy.Float("2.71828"))
    print('\n')
    pprint(e)
    print('\n')
    pprint(e.evalf())
    print()
    a = sympy.Symbol('a')
    b = sympy.Symbol('b')
    e = a*2 + a**b/a
    print('\n')
    pprint(e)
    a = 2
    print('\n')
    pprint(e.subs(a,8))
    print() | 
	negative_train_query0_00043 | |
| 
	examples/beginner/basic.py/main
def main():
    a = Symbol('a')
    b = Symbol('b')
    c = Symbol('c')
    e = ( a*b*b + 2*b*a*b )**c
    print('')
    pprint(e)
    print('') | 
	negative_train_query0_00044 | |
| 
	examples/advanced/grover_example.py/demo_vgate_app
def demo_vgate_app(v):
    for i in range(2**v.nqubits):
        print('qapply(v*IntQubit(%i, %r))' % (i, v.nqubits))
        pprint(qapply(v*IntQubit(i, v.nqubits)))
        qapply(v*IntQubit(i, v.nqubits)) | 
	negative_train_query0_00045 | |
| 
	examples/advanced/grover_example.py/black_box
def black_box(qubits):
    return True if qubits == IntQubit(1, qubits.nqubits) else False | 
	negative_train_query0_00046 | |
| 
	examples/advanced/grover_example.py/main
def main():
    print()
    print('Demonstration of Grover\'s Algorithm')
    print('The OracleGate or V Gate carries the unknown function f(x)')
    print('> V|x> = ((-1)^f(x))|x> where f(x) = 1 when x = a (True in our case)')
    print('> and 0 (False in our case) otherwise')
    print()
    nqubits = 2
    print('nqubits = ', nqubits)
    v = OracleGate(nqubits, black_box)
    print('Oracle or v = OracleGate(%r, black_box)' % nqubits)
    print()
    psi = superposition_basis(nqubits)
    print('psi:')
    pprint(psi)
    demo_vgate_app(v)
    print('qapply(v*psi)')
    pprint(qapply(v*psi))
    print()
    w = WGate(nqubits)
    print('WGate or w = WGate(%r)' % nqubits)
    print('On a 2 Qubit system like psi, 1 iteration is enough to yield |1>')
    print('qapply(w*v*psi)')
    pprint(qapply(w*v*psi))
    print()
    nqubits = 3
    print('On a 3 Qubit system, it requires 2 iterations to achieve')
    print('|1> with high enough probability')
    psi = superposition_basis(nqubits)
    print('psi:')
    pprint(psi)
    v = OracleGate(nqubits, black_box)
    print('Oracle or v = OracleGate(%r, black_box)' % nqubits)
    print()
    print('iter1 = grover.grover_iteration(psi, v)')
    iter1 = qapply(grover_iteration(psi, v))
    pprint(iter1)
    print()
    print('iter2 = grover.grover_iteration(iter1, v)')
    iter2 = qapply(grover_iteration(iter1, v))
    pprint(iter2)
    print() | 
	negative_train_query0_00047 | |
| 
	examples/advanced/autowrap_integrators.py/main
def main():
    print(__doc__)
    # arrays are represented with IndexedBase, indices with Idx
    m = Symbol('m', integer=True)
    i = Idx('i', m)
    A = IndexedBase('A')
    B = IndexedBase('B')
    x = Symbol('x')
    print("Compiling ufuncs for radial harmonic oscillator solutions")
    # setup a basis of ho-solutions  (for l=0)
    basis_ho = {}
    for n in range(basis_dimension):
        # Setup the radial ho solution for this n
        expr = R_nl(n, orbital_momentum_l, omega2, x)
        # Reduce the number of operations in the expression by eval to float
        expr = expr.evalf(15)
        print("The h.o. wave function with l = %i and n = %i is" % (
            orbital_momentum_l, n))
        pprint(expr)
        # implement, compile and wrap it as a ufunc
        basis_ho[n] = ufuncify(x, expr)
    # now let's see if we can express a hydrogen radial wave in terms of
    # the ho basis.  Here's the solution we will approximate:
    H_ufunc = ufuncify(x, hydro_nl(hydrogen_n, orbital_momentum_l, 1, x))
    # The transformation to a different basis can be written like this,
    #
    #   psi(r) = sum_i c(i) phi_i(r)
    #
    # where psi(r) is the hydrogen solution, phi_i(r) are the H.O. solutions
    # and c(i) are scalar coefficients.
    #
    # So in order to express a hydrogen solution in terms of the H.O. basis, we
    # need to determine the coefficients c(i).  In position space, it means
    # that we need to evaluate an integral:
    #
    #  psi(r) = sum_i Integral(R**2*conj(phi(R))*psi(R), (R, 0, oo)) phi_i(r)
    #
    # To calculate the integral with autowrap, we notice that it contains an
    # element-wise sum over all vectors.  Using the Indexed class, it is
    # possible to generate autowrapped functions that perform summations in
    # the low-level code.  (In fact, summations are very easy to create, and as
    # we will see it is often necessary to take extra steps in order to avoid
    # them.)
    # we need one integration ufunc for each wave function in the h.o. basis
    binary_integrator = {}
    for n in range(basis_dimension):
        #
        # setup basis wave functions
        #
        # To get inline expressions in the low level code, we attach the
        # wave function expressions to a regular SymPy function using the
        # implemented_function utility.  This is an extra step needed to avoid
        # erroneous summations in the wave function expressions.
        #
        # Such function objects carry around the expression they represent,
        # but the expression is not exposed unless explicit measures are taken.
        # The benefit is that the routines that searches for repeated indices
        # in order to make contractions will not search through the wave
        # function expression.
        psi_ho = implemented_function('psi_ho',
                Lambda(x, R_nl(n, orbital_momentum_l, omega2, x)))
        # We represent the hydrogen function by an array which will be an input
        # argument to the binary routine.  This will let the integrators find
        # h.o. basis coefficients for any wave function we throw at them.
        psi = IndexedBase('psi')
        #
        # setup expression for the integration
        #
        step = Symbol('step')  # use symbolic stepsize for flexibility
        # let i represent an index of the grid array, and let A represent the
        # grid array.  Then we can approximate the integral by a sum over the
        # following expression (simplified rectangular rule, ignoring end point
        # corrections):
        expr = A[i]**2*psi_ho(A[i])*psi[i]*step
        if n == 0:
            print("Setting up binary integrators for the integral:")
            pprint(Integral(x**2*psi_ho(x)*Function('psi')(x), (x, 0, oo)))
        # Autowrap it.  For functions that take more than one argument, it is
        # a good idea to use the 'args' keyword so that you know the signature
        # of the wrapped function.  (The dimension m will be an optional
        # argument, but it must be present in the args list.)
        binary_integrator[n] = autowrap(expr, args=[A.label, psi.label, step, m])
        # Lets see how it converges with the grid dimension
        print("Checking convergence of integrator for n = %i" % n)
        for g in range(3, 8):
            grid, step = np.linspace(0, rmax, 2**g, retstep=True)
            print("grid dimension %5i, integral = %e" % (2**g,
                    binary_integrator[n](grid, H_ufunc(grid), step)))
    print("A binary integrator has been set up for each basis state")
    print("We will now use them to reconstruct a hydrogen solution.")
    # Note: We didn't need to specify grid or use gridsize before now
    grid, stepsize = np.linspace(0, rmax, gridsize, retstep=True)
    print("Calculating coefficients with gridsize = %i and stepsize %f" % (
        len(grid), stepsize))
    coeffs = {}
    for n in range(basis_dimension):
        coeffs[n] = binary_integrator[n](grid, H_ufunc(grid), stepsize)
        print("c(%i) = %e" % (n, coeffs[n]))
    print("Constructing the approximate hydrogen wave")
    hydro_approx = 0
    all_steps = {}
    for n in range(basis_dimension):
        hydro_approx += basis_ho[n](grid)*coeffs[n]
        all_steps[n] = hydro_approx.copy()
        if pylab:
            line = pylab.plot(grid, all_steps[n], ':', label='max n = %i' % n)
    # check error numerically
    diff = np.max(np.abs(hydro_approx - H_ufunc(grid)))
    print("Error estimate: the element with largest deviation misses by %f" % diff)
    if diff > 0.01:
        print("This is much, try to increase the basis size or adjust omega")
    else:
        print("Ah, that's a pretty good approximation!")
    # Check visually
    if pylab:
        print("Here's a plot showing the contribution for each n")
        line[0].set_linestyle('-')
        pylab.plot(grid, H_ufunc(grid), 'r-', label='exact')
        pylab.legend()
        pylab.show()
    print("""Note:
    These binary integrators were specialized to find coefficients for a
    harmonic oscillator basis, but they can process any wave function as long
    as it is available as a vector and defined on a grid with equidistant
    points. That is, on any grid you get from numpy.linspace.
    To make the integrators even more flexible, you can setup the harmonic
    oscillator solutions with symbolic parameters omega and l.  Then the
    autowrapped binary routine will take these scalar variables as arguments,
    so that the integrators can find coefficients for *any* isotropic harmonic
    oscillator basis.
    """) | 
	negative_train_query0_00048 | |
| 
	examples/advanced/fem.py/bernstein_space
def bernstein_space(order, nsd):
    if nsd > 3:
        raise RuntimeError("Bernstein only implemented in 1D, 2D, and 3D")
    sum = 0
    basis = []
    coeff = []
    if nsd == 1:
        b1, b2 = x, 1 - x
        for o1 in range(0, order + 1):
            for o2 in range(0, order + 1):
                if o1 + o2 == order:
                    aij = Symbol("a_%d_%d" % (o1, o2))
                    sum += aij*binomial(order, o1)*pow(b1, o1)*pow(b2, o2)
                    basis.append(binomial(order, o1)*pow(b1, o1)*pow(b2, o2))
                    coeff.append(aij)
    if nsd == 2:
        b1, b2, b3 = x, y, 1 - x - y
        for o1 in range(0, order + 1):
            for o2 in range(0, order + 1):
                for o3 in range(0, order + 1):
                    if o1 + o2 + o3 == order:
                        aij = Symbol("a_%d_%d_%d" % (o1, o2, o3))
                        fac = factorial(order) / (factorial(o1)*factorial(o2)*factorial(o3))
                        sum += aij*fac*pow(b1, o1)*pow(b2, o2)*pow(b3, o3)
                        basis.append(fac*pow(b1, o1)*pow(b2, o2)*pow(b3, o3))
                        coeff.append(aij)
    if nsd == 3:
        b1, b2, b3, b4 = x, y, z, 1 - x - y - z
        for o1 in range(0, order + 1):
            for o2 in range(0, order + 1):
                for o3 in range(0, order + 1):
                    for o4 in range(0, order + 1):
                        if o1 + o2 + o3 + o4 == order:
                            aij = Symbol("a_%d_%d_%d_%d" % (o1, o2, o3, o4))
                            fac = factorial(order)/(factorial(o1)*factorial(o2)*factorial(o3)*factorial(o4))
                            sum += aij*fac*pow(b1, o1)*pow(b2, o2)*pow(b3, o3)*pow(b4, o4)
                            basis.append(fac*pow(b1, o1)*pow(b2, o2)*pow(b3, o3)*pow(b4, o4))
                            coeff.append(aij)
    return sum, coeff, basis | 
	negative_train_query0_00049 | |
| 
	examples/advanced/fem.py/create_point_set
def create_point_set(order, nsd):
    h = Rational(1, order)
    set = []
    if nsd == 1:
        for i in range(0, order + 1):
            x = i*h
            if x <= 1:
                set.append((x, y))
    if nsd == 2:
        for i in range(0, order + 1):
            x = i*h
            for j in range(0, order + 1):
                y = j*h
                if x + y <= 1:
                    set.append((x, y))
    if nsd == 3:
        for i in range(0, order + 1):
            x = i*h
            for j in range(0, order + 1):
                y = j*h
                for k in range(0, order + 1):
                    z = j*h
                    if x + y + z <= 1:
                        set.append((x, y, z))
    return set | 
	negative_train_query0_00050 | |
| 
	examples/advanced/fem.py/create_matrix
def create_matrix(equations, coeffs):
    A = zeros(len(equations))
    i = 0
    j = 0
    for j in range(0, len(coeffs)):
        c = coeffs[j]
        for i in range(0, len(equations)):
            e = equations[i]
            d, _ = reduced(e, [c])
            A[i, j] = d[0]
    return A | 
	negative_train_query0_00051 | |
| 
	examples/advanced/fem.py/main
def main():
    t = ReferenceSimplex(2)
    fe = Lagrange(2, 2)
    u = 0
    # compute u = sum_i u_i N_i
    us = []
    for i in range(0, fe.nbf()):
        ui = Symbol("u_%d" % i)
        us.append(ui)
        u += ui*fe.N[i]
    J = zeros(fe.nbf())
    for i in range(0, fe.nbf()):
        Fi = u*fe.N[i]
        print(Fi)
        for j in range(0, fe.nbf()):
            uj = us[j]
            integrands = diff(Fi, uj)
            print(integrands)
            J[j, i] = t.integrate(integrands)
    pprint(J) | 
	negative_train_query0_00052 | |
| 
	examples/advanced/fem.py/ReferenceSimplex/__init__
class ReferenceSimplex:    def __init__(self, nsd):
        self.nsd = nsd
        if nsd <= 3:
            coords = symbols('x,y,z')[:nsd]
        else:
            coords = [Symbol("x_%d" % d) for d in range(nsd)]
        self.coords = coords | 
	negative_train_query0_00053 | |
| 
	examples/advanced/fem.py/ReferenceSimplex/integrate
class ReferenceSimplex:    def integrate(self, f):
        coords = self.coords
        nsd = self.nsd
        limit = 1
        for p in coords:
            limit -= p
        intf = f
        for d in range(0, nsd):
            p = coords[d]
            limit += p
            intf = integrate(intf, (p, 0, limit))
        return intf | 
	negative_train_query0_00054 | |
| 
	examples/advanced/fem.py/Lagrange/__init__
class Lagrange:    def __init__(self, nsd, order):
        self.nsd = nsd
        self.order = order
        self.compute_basis() | 
	negative_train_query0_00055 | |
| 
	examples/advanced/fem.py/Lagrange/nbf
class Lagrange:    def nbf(self):
        return len(self.N) | 
	negative_train_query0_00056 | |
| 
	examples/advanced/fem.py/Lagrange/compute_basis
class Lagrange:    def compute_basis(self):
        order = self.order
        nsd = self.nsd
        N = []
        pol, coeffs, basis = bernstein_space(order, nsd)
        points = create_point_set(order, nsd)
        equations = []
        for p in points:
            ex = pol.subs(x, p[0])
            if nsd > 1:
                ex = ex.subs(y, p[1])
            if nsd > 2:
                ex = ex.subs(z, p[2])
            equations.append(ex)
        A = create_matrix(equations, coeffs)
        Ainv = A.inv()
        b = eye(len(equations))
        xx = Ainv*b
        for i in range(0, len(equations)):
            Ni = pol
            for j in range(0, len(coeffs)):
                Ni = Ni.subs(coeffs[j], xx[j, i])
            N.append(Ni)
        self.N = N | 
	negative_train_query0_00057 | |
| 
	examples/advanced/autowrap_ufuncify.py/main
def main():
    print(__doc__)
    x = symbols('x')
    # a numpy array we can apply the ufuncs to
    grid = np.linspace(-1, 1, 1000)
    # set mpmath precision to 20 significant numbers for verification
    mpmath.mp.dps = 20
    print("Compiling legendre ufuncs and checking results:")
    # Let's also plot the ufunc's we generate
    for n in range(6):
        # Setup the SymPy expression to ufuncify
        expr = legendre(n, x)
        print("The polynomial of degree %i is" % n)
        pprint(expr)
        # This is where the magic happens:
        binary_poly = ufuncify(x, expr)
        # It's now ready for use with numpy arrays
        polyvector = binary_poly(grid)
        # let's check the values against mpmath's legendre function
        maxdiff = 0
        for j in range(len(grid)):
            precise_val = mpmath.legendre(n, grid[j])
            diff = abs(polyvector[j] - precise_val)
            if diff > maxdiff:
                maxdiff = diff
        print("The largest error in applied ufunc was %e" % maxdiff)
        assert maxdiff < 1e-14
        # We can also attach the autowrapped legendre polynomial to a sympy
        # function and plot values as they are calculated by the binary function
        plot1 = plt.pyplot.plot(grid, polyvector, hold=True)
    print("Here's a plot with values calculated by the wrapped binary functions")
    plt.pyplot.show() | 
	negative_train_query0_00058 | |
| 
	examples/advanced/dense_coding_example.py/main
def main():
    psi = superposition_basis(2)
    psi
    # Dense coding demo:
    # Assume Alice has the left QBit in psi
    print("An even superposition of 2 qubits.  Assume Alice has the left QBit.")
    pprint(psi)
    # The corresponding gates applied to Alice's QBit are:
    # Identity Gate (1), Not Gate (X), Z Gate (Z), Z Gate and Not Gate (ZX)
    # Then there's the controlled not gate (with Alice's as control):CNOT(1, 0)
    # And the Hadamard gate applied to Alice's Qbit: H(1)
    # To Send Bob the message |0>|0>
    print("To Send Bob the message |00>.")
    circuit = H(1)*CNOT(1, 0)
    result = qapply(circuit*psi)
    result
    pprint(result)
    # To send Bob the message |0>|1>
    print("To Send Bob the message |01>.")
    circuit = H(1)*CNOT(1, 0)*X(1)
    result = qapply(circuit*psi)
    result
    pprint(result)
    # To send Bob the message |1>|0>
    print("To Send Bob the message |10>.")
    circuit = H(1)*CNOT(1, 0)*Z(1)
    result = qapply(circuit*psi)
    result
    pprint(result)
    # To send Bob the message |1>|1>
    print("To Send Bob the message |11>.")
    circuit = H(1)*CNOT(1, 0)*Z(1)*X(1)
    result = qapply(circuit*psi)
    result
    pprint(result) | 
	negative_train_query0_00059 | |
| 
	examples/advanced/qft.py/u
def u(p, r):
    """ p = (p1, p2, p3); r = 0,1 """
    if r not in [1, 2]:
        raise ValueError("Value of r should lie between 1 and 2")
    p1, p2, p3 = p
    if r == 1:
        ksi = Matrix([[1], [0]])
    else:
        ksi = Matrix([[0], [1]])
    a = (sigma1*p1 + sigma2*p2 + sigma3*p3) / (E + m)*ksi
    if a == 0:
        a = zeros(2, 1)
    return sqrt(E + m) *\
        Matrix([[ksi[0, 0]], [ksi[1, 0]], [a[0, 0]], [a[1, 0]]]) | 
	negative_train_query0_00060 | |
| 
	examples/advanced/qft.py/v
def v(p, r):
    """ p = (p1, p2, p3); r = 0,1 """
    if r not in [1, 2]:
        raise ValueError("Value of r should lie between 1 and 2")
    p1, p2, p3 = p
    if r == 1:
        ksi = Matrix([[1], [0]])
    else:
        ksi = -Matrix([[0], [1]])
    a = (sigma1*p1 + sigma2*p2 + sigma3*p3) / (E + m)*ksi
    if a == 0:
        a = zeros(2, 1)
    return sqrt(E + m) *\
        Matrix([[a[0, 0]], [a[1, 0]], [ksi[0, 0]], [ksi[1, 0]]]) | 
	negative_train_query0_00061 | |
| 
	examples/advanced/qft.py/pslash
def pslash(p):
    p1, p2, p3 = p
    p0 = sqrt(m**2 + p1**2 + p2**2 + p3**2)
    return gamma0*p0 - gamma1*p1 - gamma2*p2 - gamma3*p3 | 
	negative_train_query0_00062 | |
| 
	examples/advanced/qft.py/Tr
def Tr(M):
    return M.trace() | 
	negative_train_query0_00063 | |
| 
	examples/advanced/qft.py/xprint
def xprint(lhs, rhs):
    pprint(Eq(sympify(lhs), rhs)) | 
	negative_train_query0_00064 | |
| 
	examples/advanced/qft.py/main
def main():
    a = Symbol("a", real=True)
    b = Symbol("b", real=True)
    c = Symbol("c", real=True)
    p = (a, b, c)
    assert u(p, 1).D*u(p, 2) == Matrix(1, 1, [0])
    assert u(p, 2).D*u(p, 1) == Matrix(1, 1, [0])
    p1, p2, p3 = [Symbol(x, real=True) for x in ["p1", "p2", "p3"]]
    pp1, pp2, pp3 = [Symbol(x, real=True) for x in ["pp1", "pp2", "pp3"]]
    k1, k2, k3 = [Symbol(x, real=True) for x in ["k1", "k2", "k3"]]
    kp1, kp2, kp3 = [Symbol(x, real=True) for x in ["kp1", "kp2", "kp3"]]
    p = (p1, p2, p3)
    pp = (pp1, pp2, pp3)
    k = (k1, k2, k3)
    kp = (kp1, kp2, kp3)
    mu = Symbol("mu")
    e = (pslash(p) + m*ones(4))*(pslash(k) - m*ones(4))
    f = pslash(p) + m*ones(4)
    g = pslash(p) - m*ones(4)
    xprint('Tr(f*g)', Tr(f*g))
    M0 = [(v(pp, 1).D*mgamma(mu)*u(p, 1))*(u(k, 1).D*mgamma(mu, True) *
                                                 v(kp, 1)) for mu in range(4)]
    M = M0[0] + M0[1] + M0[2] + M0[3]
    M = M[0]
    if not isinstance(M, Basic):
        raise TypeError("Invalid type of variable")
    d = Symbol("d", real=True)  # d=E+m
    xprint('M', M)
    print("-"*40)
    M = ((M.subs(E, d - m)).expand()*d**2).expand()
    xprint('M2', 1 / (E + m)**2*M)
    print("-"*40)
    x, y = M.as_real_imag()
    xprint('Re(M)', x)
    xprint('Im(M)', y)
    e = x**2 + y**2
    xprint('abs(M)**2', e)
    print("-"*40)
    xprint('Expand(abs(M)**2)', e.expand()) | 
	negative_train_query0_00065 | |
| 
	examples/advanced/pidigits.py/display_fraction
def display_fraction(digits, skip=0, colwidth=10, columns=5):
    """Pretty printer for first n digits of a fraction"""
    perline = colwidth * columns
    printed = 0
    for linecount in range((len(digits) - skip) // (colwidth * columns)):
        line = digits[skip + linecount*perline:skip + (linecount + 1)*perline]
        for i in range(columns):
            print(line[i*colwidth: (i + 1)*colwidth],)
        print(":", (linecount + 1)*perline)
        if (linecount + 1) % 10 == 0:
            print
        printed += colwidth*columns
    rem = (len(digits) - skip) % (colwidth * columns)
    if rem:
        buf = digits[-rem:]
        s = ""
        for i in range(columns):
            s += buf[:colwidth].ljust(colwidth + 1, " ")
            buf = buf[colwidth:]
        print(s + ":", printed + colwidth*columns) | 
	negative_train_query0_00066 | |
| 
	examples/advanced/pidigits.py/calculateit
def calculateit(func, base, n, tofile):
    """Writes first n base-digits of a mpmath function to file"""
    prec = 100
    intpart = libmp.numeral(3, base)
    if intpart == 0:
        skip = 0
    else:
        skip = len(intpart)
    print("Step 1 of 2: calculating binary value...")
    prec = int(n*math.log(base, 2)) + 10
    t = clock()
    a = func(prec)
    step1_time = clock() - t
    print("Step 2 of 2: converting to specified base...")
    t = clock()
    d = libmp.bin_to_radix(a.man, -a.exp, base, n)
    d = libmp.numeral(d, base, n)
    step2_time = clock() - t
    print("\nWriting output...\n")
    if tofile:
        out_ = sys.stdout
        sys.stdout = tofile
    print("%i base-%i digits of pi:\n" % (n, base))
    print(intpart, ".\n")
    display_fraction(d, skip, colwidth=10, columns=5)
    if tofile:
        sys.stdout = out_
    print("\nFinished in %f seconds (%f calc, %f convert)" % \
        ((step1_time + step2_time), step1_time, step2_time)) | 
	negative_train_query0_00067 | |
| 
	examples/advanced/pidigits.py/interactive
def interactive():
    """Simple function to interact with user"""
    print("Compute digits of pi with SymPy\n")
    base = input("Which base? (2-36, 10 for decimal) \n> ")
    digits = input("How many digits? (enter a big number, say, 10000)\n> ")
    tofile = raw_input("Output to file? (enter a filename, or just press enter\nto print directly to the screen) \n> ")
    if tofile:
        tofile = open(tofile, "w")
    calculateit(pi, base, digits, tofile) | 
	negative_train_query0_00068 | |
| 
	examples/advanced/pidigits.py/main
def main():
    """A non-interactive runner"""
    base = 16
    digits = 500
    tofile = None
    calculateit(pi, base, digits, tofile) | 
	negative_train_query0_00069 | |
| 
	examples/advanced/pyglet_plotting.py/main
def main():
    x, y, z = symbols('x,y,z')
    # toggle axes visibility with F5, colors with F6
    axes_options = 'visible=false; colored=true; label_ticks=true; label_axes=true; overlay=true; stride=0.5'
    # axes_options = 'colored=false; overlay=false; stride=(1.0, 0.5, 0.5)'
    p = PygletPlot(
        width=600,
        height=500,
        ortho=False,
        invert_mouse_zoom=False,
        axes=axes_options,
        antialiasing=True)
    examples = []
    def example_wrapper(f):
        examples.append(f)
        return f
    @example_wrapper
    def mirrored_saddles():
        p[5] = x**2 - y**2, [20], [20]
        p[6] = y**2 - x**2, [20], [20]
    @example_wrapper
    def mirrored_saddles_saveimage():
        p[5] = x**2 - y**2, [20], [20]
        p[6] = y**2 - x**2, [20], [20]
        p.wait_for_calculations()
        # although the calculation is complete,
        # we still need to wait for it to be
        # rendered, so we'll sleep to be sure.
        sleep(1)
        p.saveimage("plot_example.png")
    @example_wrapper
    def mirrored_ellipsoids():
        p[2] = x**2 + y**2, [40], [40], 'color=zfade'
        p[3] = -x**2 - y**2, [40], [40], 'color=zfade'
    @example_wrapper
    def saddle_colored_by_derivative():
        f = x**2 - y**2
        p[1] = f, 'style=solid'
        p[1].color = abs(f.diff(x)), abs(f.diff(x) + f.diff(y)), abs(f.diff(y))
    @example_wrapper
    def ding_dong_surface():
        f = sqrt(1.0 - y)*y
        p[1] = f, [x, 0, 2*pi,
                   40], [y, -
                             1, 4, 100], 'mode=cylindrical; style=solid; color=zfade4'
    @example_wrapper
    def polar_circle():
        p[7] = 1, 'mode=polar'
    @example_wrapper
    def polar_flower():
        p[8] = 1.5*sin(4*x), [160], 'mode=polar'
        p[8].color = z, x, y, (0.5, 0.5, 0.5), (
            0.8, 0.8, 0.8), (x, y, None, z)  # z is used for t
    @example_wrapper
    def simple_cylinder():
        p[9] = 1, 'mode=cylindrical'
    @example_wrapper
    def cylindrical_hyperbola():
        # (note that polar is an alias for cylindrical)
        p[10] = 1/y, 'mode=polar', [x], [y, -2, 2, 20]
    @example_wrapper
    def extruded_hyperbolas():
        p[11] = 1/x, [x, -10, 10, 100], [1], 'style=solid'
        p[12] = -1/x, [x, -10, 10, 100], [1], 'style=solid'
    @example_wrapper
    def torus():
        a, b = 1, 0.5  # radius, thickness
        p[13] = (a + b*cos(x))*cos(y), (a + b*cos(x)) *\
            sin(y), b*sin(x), [x, 0, pi*2, 40], [y, 0, pi*2, 40]
    @example_wrapper
    def warped_torus():
        a, b = 2, 1  # radius, thickness
        p[13] = (a + b*cos(x))*cos(y), (a + b*cos(x))*sin(y), b *\
            sin(x) + 0.5*sin(4*y), [x, 0, pi*2, 40], [y, 0, pi*2, 40]
    @example_wrapper
    def parametric_spiral():
        p[14] = cos(y), sin(y), y / 10.0, [y, -4*pi, 4*pi, 100]
        p[14].color = x, (0.1, 0.9), y, (0.1, 0.9), z, (0.1, 0.9)
    @example_wrapper
    def multistep_gradient():
        p[1] = 1, 'mode=spherical', 'style=both'
        # p[1] = exp(-x**2-y**2+(x*y)/4), [-1.7,1.7,100], [-1.7,1.7,100], 'style=solid'
        # p[1] = 5*x*y*exp(-x**2-y**2), [-2,2,100], [-2,2,100]
        gradient = [0.0, (0.3, 0.3, 1.0),
                    0.30, (0.3, 1.0, 0.3),
                    0.55, (0.95, 1.0, 0.2),
                    0.65, (1.0, 0.95, 0.2),
                    0.85, (1.0, 0.7, 0.2),
                    1.0, (1.0, 0.3, 0.2)]
        p[1].color = z, [None, None, z], gradient
        # p[1].color = 'zfade'
        # p[1].color = 'zfade3'
    @example_wrapper
    def lambda_vs_sympy_evaluation():
        start = clock()
        p[4] = x**2 + y**2, [100], [100], 'style=solid'
        p.wait_for_calculations()
        print("lambda-based calculation took %s seconds." % (clock() - start))
        start = clock()
        p[4] = x**2 + y**2, [100], [100], 'style=solid; use_sympy_eval'
        p.wait_for_calculations()
        print(
            "sympy substitution-based calculation took %s seconds." %
            (clock() - start))
    @example_wrapper
    def gradient_vectors():
        def gradient_vectors_inner(f, i):
            from sympy import lambdify
            from sympy.plotting.plot_interval import PlotInterval
            from pyglet.gl import glBegin, glColor3f
            from pyglet.gl import glVertex3f, glEnd, GL_LINES
            def draw_gradient_vectors(f, iu, iv):
                """
                Create a function which draws vectors
                representing the gradient of f.
                """
                dx, dy, dz = f.diff(x), f.diff(y), 0
                FF = lambdify([x, y], [x, y, f])
                FG = lambdify([x, y], [dx, dy, dz])
                iu.v_steps /= 5
                iv.v_steps /= 5
                Gvl = list(list([FF(u, v), FG(u, v)]
                                for v in iv.frange())
                           for u in iu.frange())
                def draw_arrow(p1, p2):
                    """
                    Draw a single vector.
                    """
                    glColor3f(0.4, 0.4, 0.9)
                    glVertex3f(*p1)
                    glColor3f(0.9, 0.4, 0.4)
                    glVertex3f(*p2)
                def draw():
                    """
                    Iterate through the calculated
                    vectors and draw them.
                    """
                    glBegin(GL_LINES)
                    for u in Gvl:
                        for v in u:
                            point = [[v[0][0], v[0][1], v[0][2]],
                                     [v[0][0] + v[1][0], v[0][1] + v[1][1], v[0][2] + v[1][2]]]
                            draw_arrow(point[0], point[1])
                    glEnd()
                return draw
            p[i] = f, [-0.5, 0.5, 25], [-0.5, 0.5, 25], 'style=solid'
            iu = PlotInterval(p[i].intervals[0])
            iv = PlotInterval(p[i].intervals[1])
            p[i].postdraw.append(draw_gradient_vectors(f, iu, iv))
        gradient_vectors_inner(x**2 + y**2, 1)
        gradient_vectors_inner(-x**2 - y**2, 2)
    def help_str():
        s = ("\nPlot p has been created. Useful commands: \n"
             "    help(p), p[1] = x**2, print p, p.clear() \n\n"
             "Available examples (see source in plotting.py):\n\n")
        for i in range(len(examples)):
            s += "(%i) %s\n" % (i, examples[i].__name__)
        s += "\n"
        s += "e.g. >>> example(2)\n"
        s += "     >>> ding_dong_surface()\n"
        return s
    def example(i):
        if callable(i):
            p.clear()
            i()
        elif i >= 0 and i < len(examples):
            p.clear()
            examples[i]()
        else:
            print("Not a valid example.\n")
        print(p)
    example(0)  # 0 - 15 are defined above
    print(help_str()) | 
	negative_train_query0_00070 | |
| 
	examples/advanced/pyglet_plotting.py/example_wrapper
    def example_wrapper(f):
        examples.append(f)
        return f | 
	negative_train_query0_00071 | |
| 
	examples/advanced/pyglet_plotting.py/mirrored_saddles
    def mirrored_saddles():
        p[5] = x**2 - y**2, [20], [20]
        p[6] = y**2 - x**2, [20], [20] | 
	negative_train_query0_00072 | |
| 
	examples/advanced/pyglet_plotting.py/mirrored_saddles_saveimage
    def mirrored_saddles_saveimage():
        p[5] = x**2 - y**2, [20], [20]
        p[6] = y**2 - x**2, [20], [20]
        p.wait_for_calculations()
        # although the calculation is complete,
        # we still need to wait for it to be
        # rendered, so we'll sleep to be sure.
        sleep(1)
        p.saveimage("plot_example.png") | 
	negative_train_query0_00073 | |
| 
	examples/advanced/pyglet_plotting.py/mirrored_ellipsoids
    def mirrored_ellipsoids():
        p[2] = x**2 + y**2, [40], [40], 'color=zfade'
        p[3] = -x**2 - y**2, [40], [40], 'color=zfade' | 
	negative_train_query0_00074 | |
| 
	examples/advanced/pyglet_plotting.py/saddle_colored_by_derivative
    def saddle_colored_by_derivative():
        f = x**2 - y**2
        p[1] = f, 'style=solid'
        p[1].color = abs(f.diff(x)), abs(f.diff(x) + f.diff(y)), abs(f.diff(y)) | 
	negative_train_query0_00075 | |
| 
	examples/advanced/pyglet_plotting.py/ding_dong_surface
    def ding_dong_surface():
        f = sqrt(1.0 - y)*y
        p[1] = f, [x, 0, 2*pi,
                   40], [y, -
                             1, 4, 100], 'mode=cylindrical; style=solid; color=zfade4' | 
	negative_train_query0_00076 | |
| 
	examples/advanced/pyglet_plotting.py/polar_circle
    def polar_circle():
        p[7] = 1, 'mode=polar' | 
	negative_train_query0_00077 | |
| 
	examples/advanced/pyglet_plotting.py/polar_flower
    def polar_flower():
        p[8] = 1.5*sin(4*x), [160], 'mode=polar'
        p[8].color = z, x, y, (0.5, 0.5, 0.5), (
            0.8, 0.8, 0.8), (x, y, None, z)  # z is used for t | 
	negative_train_query0_00078 | |
| 
	examples/advanced/pyglet_plotting.py/simple_cylinder
    def simple_cylinder():
        p[9] = 1, 'mode=cylindrical' | 
	negative_train_query0_00079 | |
| 
	examples/advanced/pyglet_plotting.py/cylindrical_hyperbola
    def cylindrical_hyperbola():
        # (note that polar is an alias for cylindrical)
        p[10] = 1/y, 'mode=polar', [x], [y, -2, 2, 20] | 
	negative_train_query0_00080 | |
| 
	examples/advanced/pyglet_plotting.py/extruded_hyperbolas
    def extruded_hyperbolas():
        p[11] = 1/x, [x, -10, 10, 100], [1], 'style=solid'
        p[12] = -1/x, [x, -10, 10, 100], [1], 'style=solid' | 
	negative_train_query0_00081 | |
| 
	examples/advanced/pyglet_plotting.py/torus
    def torus():
        a, b = 1, 0.5  # radius, thickness
        p[13] = (a + b*cos(x))*cos(y), (a + b*cos(x)) *\
            sin(y), b*sin(x), [x, 0, pi*2, 40], [y, 0, pi*2, 40] | 
	negative_train_query0_00082 | |
| 
	examples/advanced/pyglet_plotting.py/warped_torus
    def warped_torus():
        a, b = 2, 1  # radius, thickness
        p[13] = (a + b*cos(x))*cos(y), (a + b*cos(x))*sin(y), b *\
            sin(x) + 0.5*sin(4*y), [x, 0, pi*2, 40], [y, 0, pi*2, 40] | 
	negative_train_query0_00083 | |
| 
	examples/advanced/pyglet_plotting.py/parametric_spiral
    def parametric_spiral():
        p[14] = cos(y), sin(y), y / 10.0, [y, -4*pi, 4*pi, 100]
        p[14].color = x, (0.1, 0.9), y, (0.1, 0.9), z, (0.1, 0.9) | 
	negative_train_query0_00084 | |
| 
	examples/advanced/pyglet_plotting.py/multistep_gradient
    def multistep_gradient():
        p[1] = 1, 'mode=spherical', 'style=both'
        # p[1] = exp(-x**2-y**2+(x*y)/4), [-1.7,1.7,100], [-1.7,1.7,100], 'style=solid'
        # p[1] = 5*x*y*exp(-x**2-y**2), [-2,2,100], [-2,2,100]
        gradient = [0.0, (0.3, 0.3, 1.0),
                    0.30, (0.3, 1.0, 0.3),
                    0.55, (0.95, 1.0, 0.2),
                    0.65, (1.0, 0.95, 0.2),
                    0.85, (1.0, 0.7, 0.2),
                    1.0, (1.0, 0.3, 0.2)]
        p[1].color = z, [None, None, z], gradient | 
	negative_train_query0_00085 | |
| 
	examples/advanced/pyglet_plotting.py/lambda_vs_sympy_evaluation
    def lambda_vs_sympy_evaluation():
        start = clock()
        p[4] = x**2 + y**2, [100], [100], 'style=solid'
        p.wait_for_calculations()
        print("lambda-based calculation took %s seconds." % (clock() - start))
        start = clock()
        p[4] = x**2 + y**2, [100], [100], 'style=solid; use_sympy_eval'
        p.wait_for_calculations()
        print(
            "sympy substitution-based calculation took %s seconds." %
            (clock() - start)) | 
	negative_train_query0_00086 | |
| 
	examples/advanced/pyglet_plotting.py/gradient_vectors
    def gradient_vectors():
        def gradient_vectors_inner(f, i):
            from sympy import lambdify
            from sympy.plotting.plot_interval import PlotInterval
            from pyglet.gl import glBegin, glColor3f
            from pyglet.gl import glVertex3f, glEnd, GL_LINES
            def draw_gradient_vectors(f, iu, iv):
                """
                Create a function which draws vectors
                representing the gradient of f.
                """
                dx, dy, dz = f.diff(x), f.diff(y), 0
                FF = lambdify([x, y], [x, y, f])
                FG = lambdify([x, y], [dx, dy, dz])
                iu.v_steps /= 5
                iv.v_steps /= 5
                Gvl = list(list([FF(u, v), FG(u, v)]
                                for v in iv.frange())
                           for u in iu.frange())
                def draw_arrow(p1, p2):
                    """
                    Draw a single vector.
                    """
                    glColor3f(0.4, 0.4, 0.9)
                    glVertex3f(*p1)
                    glColor3f(0.9, 0.4, 0.4)
                    glVertex3f(*p2)
                def draw():
                    """
                    Iterate through the calculated
                    vectors and draw them.
                    """
                    glBegin(GL_LINES)
                    for u in Gvl:
                        for v in u:
                            point = [[v[0][0], v[0][1], v[0][2]],
                                     [v[0][0] + v[1][0], v[0][1] + v[1][1], v[0][2] + v[1][2]]]
                            draw_arrow(point[0], point[1])
                    glEnd()
                return draw
            p[i] = f, [-0.5, 0.5, 25], [-0.5, 0.5, 25], 'style=solid'
            iu = PlotInterval(p[i].intervals[0])
            iv = PlotInterval(p[i].intervals[1])
            p[i].postdraw.append(draw_gradient_vectors(f, iu, iv))
        gradient_vectors_inner(x**2 + y**2, 1)
        gradient_vectors_inner(-x**2 - y**2, 2) | 
	negative_train_query0_00087 | |
| 
	examples/advanced/pyglet_plotting.py/help_str
    def help_str():
        s = ("\nPlot p has been created. Useful commands: \n"
             "    help(p), p[1] = x**2, print p, p.clear() \n\n"
             "Available examples (see source in plotting.py):\n\n")
        for i in range(len(examples)):
            s += "(%i) %s\n" % (i, examples[i].__name__)
        s += "\n"
        s += "e.g. >>> example(2)\n"
        s += "     >>> ding_dong_surface()\n"
        return s | 
	negative_train_query0_00088 | |
| 
	examples/advanced/pyglet_plotting.py/example
    def example(i):
        if callable(i):
            p.clear()
            i()
        elif i >= 0 and i < len(examples):
            p.clear()
            examples[i]()
        else:
            print("Not a valid example.\n")
        print(p) | 
	negative_train_query0_00089 | |
| 
	examples/advanced/pyglet_plotting.py/gradient_vectors_inner
        def gradient_vectors_inner(f, i):
            from sympy import lambdify
            from sympy.plotting.plot_interval import PlotInterval
            from pyglet.gl import glBegin, glColor3f
            from pyglet.gl import glVertex3f, glEnd, GL_LINES
            def draw_gradient_vectors(f, iu, iv):
                """
                Create a function which draws vectors
                representing the gradient of f.
                """
                dx, dy, dz = f.diff(x), f.diff(y), 0
                FF = lambdify([x, y], [x, y, f])
                FG = lambdify([x, y], [dx, dy, dz])
                iu.v_steps /= 5
                iv.v_steps /= 5
                Gvl = list(list([FF(u, v), FG(u, v)]
                                for v in iv.frange())
                           for u in iu.frange())
                def draw_arrow(p1, p2):
                    """
                    Draw a single vector.
                    """
                    glColor3f(0.4, 0.4, 0.9)
                    glVertex3f(*p1)
                    glColor3f(0.9, 0.4, 0.4)
                    glVertex3f(*p2)
                def draw():
                    """
                    Iterate through the calculated
                    vectors and draw them.
                    """
                    glBegin(GL_LINES)
                    for u in Gvl:
                        for v in u:
                            point = [[v[0][0], v[0][1], v[0][2]],
                                     [v[0][0] + v[1][0], v[0][1] + v[1][1], v[0][2] + v[1][2]]]
                            draw_arrow(point[0], point[1])
                    glEnd()
                return draw
            p[i] = f, [-0.5, 0.5, 25], [-0.5, 0.5, 25], 'style=solid'
            iu = PlotInterval(p[i].intervals[0])
            iv = PlotInterval(p[i].intervals[1])
            p[i].postdraw.append(draw_gradient_vectors(f, iu, iv)) | 
	negative_train_query0_00090 | |
| 
	examples/advanced/pyglet_plotting.py/draw_gradient_vectors
            def draw_gradient_vectors(f, iu, iv):
                """
                Create a function which draws vectors
                representing the gradient of f.
                """
                dx, dy, dz = f.diff(x), f.diff(y), 0
                FF = lambdify([x, y], [x, y, f])
                FG = lambdify([x, y], [dx, dy, dz])
                iu.v_steps /= 5
                iv.v_steps /= 5
                Gvl = list(list([FF(u, v), FG(u, v)]
                                for v in iv.frange())
                           for u in iu.frange())
                def draw_arrow(p1, p2):
                    """
                    Draw a single vector.
                    """
                    glColor3f(0.4, 0.4, 0.9)
                    glVertex3f(*p1)
                    glColor3f(0.9, 0.4, 0.4)
                    glVertex3f(*p2)
                def draw():
                    """
                    Iterate through the calculated
                    vectors and draw them.
                    """
                    glBegin(GL_LINES)
                    for u in Gvl:
                        for v in u:
                            point = [[v[0][0], v[0][1], v[0][2]],
                                     [v[0][0] + v[1][0], v[0][1] + v[1][1], v[0][2] + v[1][2]]]
                            draw_arrow(point[0], point[1])
                    glEnd()
                return draw | 
	negative_train_query0_00091 | |
| 
	examples/advanced/pyglet_plotting.py/draw_arrow
                def draw_arrow(p1, p2):
                    """
                    Draw a single vector.
                    """
                    glColor3f(0.4, 0.4, 0.9)
                    glVertex3f(*p1)
                    glColor3f(0.9, 0.4, 0.4)
                    glVertex3f(*p2) | 
	negative_train_query0_00092 | |
| 
	examples/advanced/pyglet_plotting.py/draw
                def draw():
                    """
                    Iterate through the calculated
                    vectors and draw them.
                    """
                    glBegin(GL_LINES)
                    for u in Gvl:
                        for v in u:
                            point = [[v[0][0], v[0][1], v[0][2]],
                                     [v[0][0] + v[1][0], v[0][1] + v[1][1], v[0][2] + v[1][2]]]
                            draw_arrow(point[0], point[1])
                    glEnd() | 
	negative_train_query0_00093 | |
| 
	examples/advanced/relativity.py/grad
def grad(f, X):
    a = []
    for x in X:
        a.append(f.diff(x))
    return a | 
	negative_train_query0_00094 | |
| 
	examples/advanced/relativity.py/d
def d(m, x):
    return grad(m[0, 0], x) | 
	negative_train_query0_00095 | |
| 
	examples/advanced/relativity.py/curvature
def curvature(Rmn):
    return Rmn.ud(0, 0) + Rmn.ud(1, 1) + Rmn.ud(2, 2) + Rmn.ud(3, 3) | 
	negative_train_query0_00096 | |
| 
	examples/advanced/relativity.py/pprint_Gamma_udd
def pprint_Gamma_udd(i, k, l):
    pprint(Eq(Symbol('Gamma^%i_%i%i' % (i, k, l)), Gamma.udd(i, k, l))) | 
	negative_train_query0_00097 | |
| 
	examples/advanced/relativity.py/pprint_Rmn_dd
def pprint_Rmn_dd(i, j):
    pprint(Eq(Symbol('R_%i%i' % (i, j)), Rmn.dd(i, j))) | 
	negative_train_query0_00098 | 
			Subsets and Splits
				
	
				
			
				
No community queries yet
The top public SQL queries from the community will appear here once available.
