--- annotations_creators: - human-annotated language: - eng license: cc-by-nc-sa-4.0 multilinguality: monolingual source_datasets: - McGill-NLP/TopiOCQA task_categories: - text-retrieval - conversational - utterance-retrieval task_ids: - conversational - utterance-retrieval dataset_info: - config_name: corpus features: - name: id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: validation num_bytes: 12968260233 num_examples: 25700592 - name: train num_bytes: 12968260233 num_examples: 25700592 download_size: 14919230284 dataset_size: 25936520466 - config_name: qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: validation num_bytes: 83677 num_examples: 2514 - name: train num_bytes: 1571297 num_examples: 45450 download_size: 579306 dataset_size: 1654974 - config_name: queries features: - name: id dtype: string - name: text sequence: string splits: - name: validation num_bytes: 1726530 num_examples: 2514 - name: train num_bytes: 34196732 num_examples: 45450 download_size: 4060070 dataset_size: 35923262 configs: - config_name: corpus data_files: - split: validation path: corpus/validation-* - split: train path: corpus/train-* - config_name: qrels data_files: - split: validation path: qrels/validation-* - split: train path: qrels/train-* - config_name: queries data_files: - split: validation path: queries/validation-* - split: train path: queries/train-* tags: - mteb - text ---

TopiOCQA

An MTEB dataset
Massive Text Embedding Benchmark
TopiOCQA (Human-in-the-loop Attributable Generative Retrieval for Information-seeking Dataset) is information-seeking conversational dataset with challenging topic switching phenomena. It consists of conversation histories along with manually labelled relevant/gold passage. | | | |---------------|---------------------------------------------| | Task category | t2t | | Domains | Encyclopaedic, Written | | Reference | https://mcgill-nlp.github.io/topiocqa | Source datasets: - [McGill-NLP/TopiOCQA](https://huggingface.co/datasets/McGill-NLP/TopiOCQA) ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_task("TopiOCQA") evaluator = mteb.MTEB([task]) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` To learn more about how to run models on `mteb` task check out the [GitHub repository](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @misc{adlakha2022topiocqa, archiveprefix = {arXiv}, author = {Vaibhav Adlakha and Shehzaad Dhuliawala and Kaheer Suleman and Harm de Vries and Siva Reddy}, eprint = {2110.00768}, primaryclass = {cs.CL}, title = {TopiOCQA: Open-domain Conversational Question Answering with Topic Switching}, year = {2022}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics
Dataset Statistics The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("TopiOCQA") desc_stats = task.metadata.descriptive_stats ``` ```json { "validation": { "num_samples": 25703106, "number_of_characters": 12335256444, "documents_text_statistics": { "total_text_length": 12333632081, "min_text_length": 13, "average_text_length": 479.8968086416064, "max_text_length": 28111, "unique_texts": 25700581 }, "documents_image_statistics": null, "queries_text_statistics": { "total_text_length": 1624363, "min_text_length": 14, "average_text_length": 646.1268894192522, "max_text_length": 2602, "unique_texts": 2514 }, "queries_image_statistics": null, "relevant_docs_statistics": { "num_relevant_docs": 2514, "min_relevant_docs_per_query": 1, "average_relevant_docs_per_query": 1.0, "max_relevant_docs_per_query": 1, "unique_relevant_docs": 1940 }, "top_ranked_statistics": null }, "train": { "num_samples": 25746042, "number_of_characters": 12365824509, "documents_text_statistics": { "total_text_length": 12333632081, "min_text_length": 13, "average_text_length": 479.8968086416064, "max_text_length": 28111, "unique_texts": 25700581 }, "documents_image_statistics": null, "queries_text_statistics": { "total_text_length": 32192428, "min_text_length": 11, "average_text_length": 708.3042464246424, "max_text_length": 4668, "unique_texts": 45305 }, "queries_image_statistics": null, "relevant_docs_statistics": { "num_relevant_docs": 45450, "min_relevant_docs_per_query": 1, "average_relevant_docs_per_query": 1.0, "max_relevant_docs_per_query": 1, "unique_relevant_docs": 29788 }, "top_ranked_statistics": null } } ```
--- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*