Datasets:
ArXiv:
License:
file for loading data with HF datasets load_dataset() module
Browse files
weather_forecast_discussion/dataset.py
ADDED
|
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import datasets
|
| 5 |
+
|
| 6 |
+
class CSVhrrrDataset(datasets.GeneratorBasedBuilder):
|
| 7 |
+
"""
|
| 8 |
+
A custom dataset to load CSV and corresponding hrrr files.
|
| 9 |
+
The CSV files are loaded using pandas and the hrrr files using numpy.
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
# Define dataset name and version
|
| 13 |
+
VERSION = datasets.Version("1.0.0")
|
| 14 |
+
|
| 15 |
+
def _info(self):
|
| 16 |
+
# Dataset description and features
|
| 17 |
+
return datasets.DatasetInfo(
|
| 18 |
+
description="Dataset containing CSV and corresponding hrrr files.",
|
| 19 |
+
features=datasets.Features({
|
| 20 |
+
"csv_data": datasets.Value("string"), # CSV content as a string or specific columns
|
| 21 |
+
"hrrr_file_path": datasets.Value("string"), # Assuming hrrr files contain float32 data
|
| 22 |
+
"filename": datasets.Value("string"), # Filename of the CSV file
|
| 23 |
+
}),
|
| 24 |
+
supervised_keys=None,
|
| 25 |
+
homepage="https://huggingface.co/datasets/nasa-impact/WINDSET/tree/main/weather_forecast_discussion",
|
| 26 |
+
license="MIT",
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
def _split_generators(self, dl_manager):
|
| 30 |
+
"""
|
| 31 |
+
Define dataset splits for this dataset (train, validation, test).
|
| 32 |
+
In this case, we just load all the files into a single split.
|
| 33 |
+
"""
|
| 34 |
+
# Get the directory paths
|
| 35 |
+
csv_dir = os.path.join(os.getcwd(), "weather_forecast_discussion/csv_reports")
|
| 36 |
+
hrrr_dir = os.path.join(os.getcwd(), "weather_forecast_discussion/hrrr")
|
| 37 |
+
|
| 38 |
+
# Check that both directories exist
|
| 39 |
+
if not os.path.isdir(csv_dir):
|
| 40 |
+
raise FileNotFoundError(f"CSV directory {csv_dir} not found!")
|
| 41 |
+
if not os.path.isdir(hrrr_dir):
|
| 42 |
+
raise FileNotFoundError(f"hrrr directory {hrrr_dir} not found!")
|
| 43 |
+
|
| 44 |
+
# List CSV and hrrr files
|
| 45 |
+
csv_files = [f for f in os.listdir(csv_dir) if f.endswith('.csv')]
|
| 46 |
+
hrrr_files = [f for f in os.listdir(hrrr_dir) if f.endswith('.grib2')]
|
| 47 |
+
|
| 48 |
+
# Ensure CSV and hrrr files are paired correctly by date
|
| 49 |
+
file_pairs = []
|
| 50 |
+
for csv_file in csv_files:
|
| 51 |
+
# Extract the date from the CSV file (assuming format is 'date.csv')
|
| 52 |
+
date_str = os.path.splitext(csv_file)[0]
|
| 53 |
+
|
| 54 |
+
# Search for matching hrrr files in the hrrr directory
|
| 55 |
+
matching_hrrr_files = [hrrr for hrrr in hrrr_files if f"hrrr.{date_str}." in hrrr]
|
| 56 |
+
|
| 57 |
+
if len(matching_hrrr_files) == 1: # Ensure exactly one match
|
| 58 |
+
file_pairs.append((csv_file, matching_hrrr_files[0]))
|
| 59 |
+
elif len(matching_hrrr_files) == 0:
|
| 60 |
+
print(f"Warning: No matching hrrr file found for CSV file: {csv_file}")
|
| 61 |
+
else:
|
| 62 |
+
print(f"Warning: Multiple matching hrrr files found for CSV file: {csv_file}. Using the first match.")
|
| 63 |
+
file_pairs.append((csv_file, matching_hrrr_files[0])) # Use the first match if multiple are found
|
| 64 |
+
|
| 65 |
+
# If no valid file pairs were found, raise an error
|
| 66 |
+
if not file_pairs:
|
| 67 |
+
raise ValueError("No valid CSV-hrrr file pairs found. Check the directory structure and file names.")
|
| 68 |
+
|
| 69 |
+
# Create a split generator
|
| 70 |
+
return [
|
| 71 |
+
datasets.SplitGenerator(
|
| 72 |
+
name=datasets.Split.TRAIN,
|
| 73 |
+
gen_kwargs={
|
| 74 |
+
"file_pairs": file_pairs,
|
| 75 |
+
"csv_dir": csv_dir,
|
| 76 |
+
"hrrr_dir": hrrr_dir,
|
| 77 |
+
}
|
| 78 |
+
)
|
| 79 |
+
]
|
| 80 |
+
|
| 81 |
+
def _generate_examples(self, file_pairs, csv_dir, hrrr_dir):
|
| 82 |
+
"""
|
| 83 |
+
Yield examples from the CSV and hrrr files.
|
| 84 |
+
Each example contains data from a CSV file and its corresponding hrrr file.
|
| 85 |
+
"""
|
| 86 |
+
example_id = 0
|
| 87 |
+
|
| 88 |
+
for csv_file, hrrr_file in file_pairs:
|
| 89 |
+
# Load CSV file using pandas
|
| 90 |
+
csv_file_path = os.path.join(csv_dir, csv_file)
|
| 91 |
+
csv_data = pd.read_csv(csv_file_path)
|
| 92 |
+
|
| 93 |
+
# Load corresponding hrrr file using numpy
|
| 94 |
+
hrrr_file_path = os.path.join(hrrr_dir, hrrr_file)
|
| 95 |
+
|
| 96 |
+
# Yield example with both CSV and hrrr data
|
| 97 |
+
yield example_id, {
|
| 98 |
+
"csv_data": csv_data["discussion"].to_string(), # Store content under discussion only
|
| 99 |
+
"hrrr_file_path": hrrr_file_path,
|
| 100 |
+
"filename": csv_file,
|
| 101 |
+
}
|
| 102 |
+
example_id += 1
|