Datasets:
Nicholas Broad
commited on
Commit
·
0f2e4bd
1
Parent(s):
e58c777
builder script
Browse files- mediasum.py +117 -0
mediasum.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
# Lint as: python3
|
| 17 |
+
"""MediaSum dataset"""
|
| 18 |
+
|
| 19 |
+
import os
|
| 20 |
+
import json
|
| 21 |
+
|
| 22 |
+
import datasets
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
logger = datasets.logging.get_logger(__name__)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
_HOMEPAGE = "https://github.com/zcgzcgzcg1/MediaSum"
|
| 29 |
+
|
| 30 |
+
_DESCRIPTION = """\
|
| 31 |
+
This large-scale media interview dataset contains 463.6K transcripts with abstractive summaries,
|
| 32 |
+
collected from interview transcripts and overview / topic descriptions from NPR and CNN.
|
| 33 |
+
"""
|
| 34 |
+
|
| 35 |
+
_CITATION = """\
|
| 36 |
+
@article{zhu2021mediasum,
|
| 37 |
+
title={MediaSum: A Large-scale Media Interview Dataset for Dialogue Summarization},
|
| 38 |
+
author={Zhu, Chenguang and Liu, Yang and Mei, Jie and Zeng, Michael},
|
| 39 |
+
journal={arXiv preprint arXiv:2103.06410},
|
| 40 |
+
year={2021}
|
| 41 |
+
}
|
| 42 |
+
"""
|
| 43 |
+
|
| 44 |
+
_DOWNLOAD_URLS = {
|
| 45 |
+
"train": "https://huggingface.co/datasets/nbroad/mediasum/resolve/main/train.json",
|
| 46 |
+
"validation": "https://huggingface.co/datasets/nbroad/mediasum/resolve/main/validation.json",
|
| 47 |
+
"test": "https://huggingface.co/datasets/nbroad/mediasum/resolve/main/test.json",
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class MediaSumConfig(datasets.BuilderConfig):
|
| 52 |
+
"""BuilderConfig for MediaSum."""
|
| 53 |
+
|
| 54 |
+
def __init__(self, **kwargs):
|
| 55 |
+
"""BuilderConfig for MediaSum.
|
| 56 |
+
Args:
|
| 57 |
+
**kwargs: keyword arguments forwarded to super.
|
| 58 |
+
"""
|
| 59 |
+
super().__init__(**kwargs)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class MediaSum(datasets.GeneratorBasedBuilder):
|
| 63 |
+
"""MediaSum summarization dataset."""
|
| 64 |
+
|
| 65 |
+
BUILDER_CONFIGS = [MediaSumConfig(name="mediasum", description="Plain text")]
|
| 66 |
+
|
| 67 |
+
def _info(self):
|
| 68 |
+
return datasets.DatasetInfo(
|
| 69 |
+
description=_DESCRIPTION,
|
| 70 |
+
features=datasets.Features(
|
| 71 |
+
{
|
| 72 |
+
"id": datasets.Value("string"),
|
| 73 |
+
"program": datasets.Value("string"),
|
| 74 |
+
"date": datasets.Value("string"),
|
| 75 |
+
"url": datasets.Value("string"),
|
| 76 |
+
"title": datasets.Value("string"),
|
| 77 |
+
"summary": datasets.Value("string"),
|
| 78 |
+
"utt": datasets.features.Sequence(
|
| 79 |
+
datasets.Value("string")
|
| 80 |
+
),
|
| 81 |
+
"speaker": datasets.features.Sequence(
|
| 82 |
+
datasets.Value("string")
|
| 83 |
+
),
|
| 84 |
+
}
|
| 85 |
+
),
|
| 86 |
+
supervised_keys=None,
|
| 87 |
+
homepage=_HOMEPAGE,
|
| 88 |
+
citation=_CITATION,
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
def _split_generators(self, dl_manager):
|
| 92 |
+
dl_path = dl_manager.download(_DOWNLOAD_URLS)
|
| 93 |
+
|
| 94 |
+
return [
|
| 95 |
+
datasets.SplitGenerator(
|
| 96 |
+
name=split,
|
| 97 |
+
gen_kwargs={
|
| 98 |
+
"filepath": dl_path[split],
|
| 99 |
+
},
|
| 100 |
+
)
|
| 101 |
+
for split in [
|
| 102 |
+
datasets.Split.TRAIN,
|
| 103 |
+
datasets.Split.VALIDATION,
|
| 104 |
+
datasets.Split.TEST,
|
| 105 |
+
]
|
| 106 |
+
]
|
| 107 |
+
|
| 108 |
+
def _generate_examples(self, filepath):
|
| 109 |
+
|
| 110 |
+
with open(filepath, "r") as fp:
|
| 111 |
+
for idx, line in enumerate(fp):
|
| 112 |
+
data = json.loads(line)
|
| 113 |
+
|
| 114 |
+
# Some do not have titles
|
| 115 |
+
if "title" not in data:
|
| 116 |
+
data["title"] = ""
|
| 117 |
+
yield idx, data
|