--- license: mit modalities: - Text formats: - parquet size: 10M - 100M libraries: - Datasets - Dask - Croissant - Polars --- # ๐Ÿš€ GitHub Code 2025: The Clean Code Manifesto > **A meticulously curated dataset of 1.5M+ repositories representing both quality and innovation in 2025's code ecosystem** ## ๐ŸŒŸ The Philosophy **Quality Over Quantity, Purpose Over Volume** In an era of data abundance, we present a dataset built on radical curation. Every file, every repository, every byte has been carefully selected to represent the **signal** in the noise of open-source development. ## ๐ŸŽฏ What This Dataset Is ### ๐Ÿ“Š Dual-Perspective Design | Subset | ๐ŸŽ–๏ธ Above 2 Stars | ๐ŸŒฑ Below 2 Stars (2025) | |--------|------------------|------------------------| | **Scope** | 1M top repositories | 1M random 2025 repos | | **Purpose** | Proven quality & patterns | Emerging trends & innovation | | **Value** | What works | What's next | ### ๐Ÿงน The Clean Code Promise ```python # What you WON'T find here: ๐Ÿšซ Binary files # No images, executables, models ๐Ÿšซ Build artifacts # No node_modules, __pycache__ ๐Ÿšซ Configuration noise # No .git, IDE files, lock files ๐Ÿšซ License duplication # No repetitive legal text ๐Ÿšซ Minified code # No compressed/obfuscated content ๐Ÿšซ Empty files # No whitespace-only content ``` ## ๐Ÿ“ Dataset Structure ``` github-code-2025/ โ”œโ”€โ”€ ๐Ÿ“ˆ above-2-stars/ โ”‚ โ”œโ”€โ”€ train_000.parquet โ”‚ โ”œโ”€โ”€ train_001.parquet โ”‚ โ””โ”€โ”€ ... โ””โ”€โ”€ ๐ŸŒฑ below-2-star/ โ”œโ”€โ”€ train_000.parquet โ”œโ”€โ”€ train_001.parquet โ””โ”€โ”€ ... ``` ### ๐Ÿ“Š Schema ```python { "repo_id": "owner/repo_name", # ๐Ÿ“ Repository identifier "file_path": "src/main.py", # ๐Ÿ—‚๏ธ Relative file path "content": "def clean_code():", # ๐Ÿ’Ž Actual source code "size": 1024 # ๐Ÿ“ File size in bytes } ``` ## ๐Ÿ› ๏ธ How to Use ### ๐Ÿ”ฅ Quick Start ```python from datasets import load_dataset # Load the quality benchmark quality_ds = load_dataset("nick007x/github-code-2025", "above-2-stars") # Load emerging trends emerging_ds = load_dataset("nick007x/github-code-2025", "below-2-star") # Mix for balanced training balanced_ds = interleave_datasets([quality_ds, emerging_ds]) ``` ### ๐ŸŽฏ Ideal Use Cases - **๐Ÿง  AI Training**: Clean, diverse code for language models - **๐Ÿ“Š Code Analysis**: Compare popular vs emerging patterns - **๐Ÿ” Trend Research**: 2025 development practices - **๐ŸŽ“ Education**: High-quality examples for learning - **๐Ÿ› ๏ธ Tool Development**: Benchmarking code quality tools ## ๐Ÿ—๏ธ Creation Methodology ### ๐ŸŽจ Selection Strategy | Phase | Action | Purpose | |-------|--------|---------| | **1** | ๐ŸŽฏ Dual population sampling | Balance quality & innovation | | **2** | ๐Ÿงน Multi-layer filtering | Remove noise & binaries | | **3** | ๐Ÿ“ Size normalization | Focus on meaningful content | | **4** | ๐Ÿ” Content validation | Ensure text quality | | **5** | ๐Ÿท๏ธ Metadata preservation | Maintain context | ### ๐Ÿšซ What We Filtered Out **File Types Removed:** - 50+ binary extensions (images, models, executables) - 30+ build/system directories - 15+ configuration file types - All files outside 1KB-5MB range **Quality Checks:** - โœ… UTF-8 text validation - โœ… Non-empty content check - โœ… Binary detection - โœ… Repository structure preservation ## ๐ŸŽช Why This Dataset Matters ### ๐Ÿ’ซ The Quality Revolution We reject the "more data is better" dogma. Instead, we offer: - **๐ŸŽฏ Intentional Curation**: Every file serves a purpose - **โš–๏ธ Balanced Perspective**: Popular + Emerging = Complete picture - **๐Ÿงน Unprecedented Cleanliness**: The cleanest code dataset available - **๐Ÿ“… Temporal Intelligence**: 2025-focused for relevance ## ๐Ÿค Contributing & Feedback This dataset is a living project. We welcome: - ๐Ÿ› Bug reports and issues - ๐Ÿ’ก Feature requests for future versions - ๐Ÿ“Š Validation of data quality - ๐ŸŽฏ Suggestions for improvement ## ๐Ÿ“œ License This dataset is provided under the **MIT License** - see the LICENSE file for details. **Important**: Repository contents maintain their original licenses. Please respect individual project licenses when using this data. ## ๐Ÿ™ Acknowledgments Built with gratitude for the entire open-source community. Every file in this dataset represents hours of dedication from developers worldwide. --- **โญ If this dataset helps your research or project, please consider starring the repository!** > **"In the pursuit of AI that understands code, we must first understand what code is worth learning."**