--- license: cc-by-4.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: val path: data/val-* - split: test path: data/test-* dataset_info: features: - name: image_name dtype: string - name: image dtype: image - name: width dtype: int32 - name: height dtype: int32 - name: instances sequence: - name: category_id dtype: int32 - name: mask sequence: sequence: float32 splits: - name: train num_bytes: 8566253.0 num_examples: 200 - name: val num_bytes: 4532786.0 num_examples: 100 - name: test num_bytes: 3809329.0 num_examples: 100 download_size: 16498520 dataset_size: 16908368.0 ---

Line Graphics Digitization: A Step Towards Full Automation

Omar Moured, Jiaming Zhang, Alina Roitberg, Thorsten Schwarz, Rainer Stiefelhagen

Paper Dataset

![Example visualization](./lgsample.png) ## Dataset Summary The dataset includes instance segmentation masks for **400 real line chart images, manually labeled into 11 categories** by professionals. These images were collected from 5 different professions to enhance diversity. In our paper, we studied two levels of segmentation: **coarse-level**, where we segmented (spines, axis-labels, legend, lines, titles), and **fine-level**, where we further segmented each category into x and y subclasses (except for legend and lines), and individually segmented each line. ## Dataset structure (train, validation, test) - **image** - contains the PIL image of the chart - **image_name** - image name with PNG extension - **width** - original image width - **height** - original image height - **instances** - contains **N** number of COCO format instances. Check the sample visulization code below. ## Sample Usage [optional] install `pycocotools` to rendeder masks with below code. ```python from datasets import load_dataset from pycocotools import mask import matplotlib.pyplot as plt import random # Load dataset ds = load_dataset("omoured/line-graphics-dataset") # Class ID to name id_to_name = { 0: "Label", 1: "Legend", 2: "Line", 3: "Spine", 4: "Title", 5: "ptitle", 6: "xlabel", 7: "xspine", 8: "xtitle", 9: "ylabel", 10: "yspine", 11: "ytitle" } # Random image + instance sample = random.choice(ds["val"]) img = sample["image"] i = random.randint(0, len(sample["instances"]["mask"]) - 1) # Get mask + class info poly = sample["instances"]["mask"][i] cat_id = sample["instances"]["category_id"][i] cat_name = id_to_name.get(cat_id, "Unknown") # Decode and plot rle = mask.frPyObjects(poly, sample["height"], sample["width"]) bin_mask = mask.decode(rle) plt.imshow(img) plt.imshow(bin_mask, alpha=0.5, cmap="jet") plt.title(f"imgname: {sample['image_name']}, inst: {cat_name}") plt.axis("off") plt.show() ``` ## Copyrights This dataset is published under the CC-BY 4.0 license, which allows for unrestricted usage, but it should be cited when used. ## Citation ```bibtex @inproceedings{moured2023line, title={Line Graphics Digitization: A Step Towards Full Automation}, author={Moured, Omar and Zhang, Jiaming and Roitberg, Alina and Schwarz, Thorsten and Stiefelhagen, Rainer}, booktitle={International Conference on Document Analysis and Recognition}, pages={438--453}, year={2023}, organization={Springer} } ``` ## Contact If you have any questions or need further assistance with this dataset, please feel free to contact us: - **Omar Moured**, omar.moured@kit.edu