--- license: apache-2.0 size_categories: - 1K ## 🚀 LR0.FM (ICLR-25 🎉)
[webpage](https://ucf-crcv.github.io/lr0.fm/) | [paper](https://arxiv.org/abs/2502.03950) | [video](https://recorder-v3.slideslive.com/#/share?share=99927&s=b52e48b7-e501-45c7-b7c9-b1d415e77f1e) | [results]() | [weights]()

Captions randomly sampled from [Conceptual Captions](https://github.com/google-research-datasets/conceptual-captions), and the diffusion model [PIXART-α](https://github.com/PixArt-alpha/PixArt-alpha) generates synthetic dataset for it. 7,000 randomly sampled captions. ``` import torch from diffusers import PixArtAlphaPipeline pipe = PixArtAlphaPipeline.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", torch_dtype=torch.float16) pipe = pipe.to('cuda') line = line.strip() ## caption line from either `caption_2k.txt' or `caption_5k.txt' offset = 0 for fold in range(7): images =pipe(line, num_images_per_prompt=10, ).images [img.save(f"{ROOT}/{offset + k}.png") for k,img in enumerate(images)] offset += 10 ``` --- ```bibtex @inproceedings{ pathak2025lrfm, title={{ LR0.FM: Low-Res Benchmark and Improving robustness for Zero-Shot Classification in Foundation Models} }, author={Priyank Pathak and Shyam Marjit and Shruti Vyas and Yogesh S Rawat}, booktitle={The Thirteenth International Conference on Learning Representations}, year={2025}, url={https://openreview.net/forum?id=AsFxRSLtqR} } @article{pathak2025lr0, title={LR0. FM: Low-Resolution Zero-shot Classification Benchmark For Foundation Models}, author={Pathak, Priyank and Marjit, Shyam and Vyas, Shruti and Rawat, Yogesh S}, journal={arXiv preprint arXiv:2502.03950}, year={2025} } ``` --- --- license: cc ---