Datasets:
File size: 1,156 Bytes
7965e76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: apache-2.0
task_categories:
- image-classification
language:
- en
tags:
- age
- 10,000
- image
- video
- art
- synthetic
- image-classification
size_categories:
- 1K<n<10K
---
# Face-Age-10K Dataset
The **Face-Age-10K** dataset consists of over 9,000 facial images annotated with age group labels. It is designed for training machine learning models to perform **age classification** from facial features.
## Dataset Details
* **Total Images**: 9,165
* **Image Size**: 200x200 pixels
* **Format**: Parquet
* **Modality**: Image
* **Split**:
* `train`: 9,165 images
## Labels
The dataset includes 8 age group classes:
```python
labels_list = [
'age 01-10',
'age 11-20',
'age 21-30',
'age 31-40',
'age 41-55',
'age 56-65',
'age 66-80',
'age 80 +'
]
```
Each image is labeled with one of the above age categories.
## Usage
You can load this dataset using the Hugging Face `datasets` library:
```python
from datasets import load_dataset
dataset = load_dataset("prithivMLmods/Face-Age-10K")
```
To access individual samples:
```python
sample = dataset["train"][0]
image = sample["image"]
label = sample["label"]
``` |