[update]add data
Browse files- .gitignore +6 -0
- data/train.zip +3 -0
- main.py +16 -0
- requirements.txt +1 -0
- wechat_or_qq_icon_detection.py +121 -0
.gitignore
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.idea/
|
| 2 |
+
.git/
|
| 3 |
+
|
| 4 |
+
**/__pycache__/
|
| 5 |
+
|
| 6 |
+
**/*.tmp
|
data/train.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b417be9196db8eb252f8f31759504aea6ffdfbc84987b010eb4c3fabd0056cc3
|
| 3 |
+
size 15934756
|
main.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
|
| 5 |
+
dataset = load_dataset(
|
| 6 |
+
"wechat_or_qq_icon_detection.py",
|
| 7 |
+
split="train",
|
| 8 |
+
)
|
| 9 |
+
print(dataset)
|
| 10 |
+
|
| 11 |
+
for sample in dataset:
|
| 12 |
+
print(sample)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
if __name__ == '__main__':
|
| 16 |
+
pass
|
requirements.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
datasets
|
wechat_or_qq_icon_detection.py
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
from glob import glob
|
| 4 |
+
import os
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
|
| 7 |
+
import datasets
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
_URL = "data/train.zip"
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
_CITATION = """\
|
| 14 |
+
@dataset{early_media,
|
| 15 |
+
author = {Xing Tian},
|
| 16 |
+
title = {wechat_or_qq_icon_detection},
|
| 17 |
+
month = aug,
|
| 18 |
+
year = 2023,
|
| 19 |
+
publisher = {Xing Tian},
|
| 20 |
+
version = {1.0},
|
| 21 |
+
}
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
_CATEGORIES = [
|
| 26 |
+
"红黑白QQ图标", "绿边白色微信图标", "淡蓝底全白QQ图标",
|
| 27 |
+
"绿底全白微信图标", "大绿小白微信图标", "纯色微信图标", "纯色QQ图标"
|
| 28 |
+
]
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class TelemarketingVoiceClassification(datasets.GeneratorBasedBuilder):
|
| 32 |
+
VERSION = datasets.Version("1.0.0")
|
| 33 |
+
|
| 34 |
+
BUILDER_CONFIGS = [
|
| 35 |
+
datasets.BuilderConfig(
|
| 36 |
+
name="default",
|
| 37 |
+
version=VERSION,
|
| 38 |
+
description="wechat_or_qq_icon_detection",
|
| 39 |
+
),
|
| 40 |
+
]
|
| 41 |
+
|
| 42 |
+
def _info(self):
|
| 43 |
+
features = datasets.Features(
|
| 44 |
+
{
|
| 45 |
+
"image_id": datasets.Value("string"),
|
| 46 |
+
"image": datasets.Image(),
|
| 47 |
+
"objects": datasets.Sequence({
|
| 48 |
+
"object_id": datasets.Value("int64"),
|
| 49 |
+
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
|
| 50 |
+
"category": datasets.ClassLabel(names=_CATEGORIES)
|
| 51 |
+
}),
|
| 52 |
+
"source": datasets.Value("string"),
|
| 53 |
+
}
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
return datasets.DatasetInfo(
|
| 57 |
+
features=features,
|
| 58 |
+
supervised_keys=None,
|
| 59 |
+
homepage="",
|
| 60 |
+
license="",
|
| 61 |
+
citation=_CITATION,
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
def _split_generators(self, dl_manager):
|
| 65 |
+
"""Returns SplitGenerators."""
|
| 66 |
+
dl_path = dl_manager.download_and_extract(_URL)
|
| 67 |
+
archive_path = os.path.join(dl_path, self.config.name)
|
| 68 |
+
|
| 69 |
+
return [
|
| 70 |
+
datasets.SplitGenerator(
|
| 71 |
+
name=datasets.Split.TRAIN,
|
| 72 |
+
gen_kwargs={"archive_path": archive_path, "split": "train"},
|
| 73 |
+
),
|
| 74 |
+
]
|
| 75 |
+
|
| 76 |
+
def _generate_examples(self, archive_path, split):
|
| 77 |
+
"""Yields examples."""
|
| 78 |
+
archive_path = Path(archive_path)
|
| 79 |
+
archive_path = archive_path.parent
|
| 80 |
+
|
| 81 |
+
annotation_file = archive_path / split / "annotation.txt"
|
| 82 |
+
|
| 83 |
+
idx = 0
|
| 84 |
+
source = 0
|
| 85 |
+
image_path = None
|
| 86 |
+
objects = list()
|
| 87 |
+
with open(annotation_file, "r", encoding="utf-8") as f:
|
| 88 |
+
for row in f:
|
| 89 |
+
row = str(row).strip()
|
| 90 |
+
|
| 91 |
+
if len(row) == 0:
|
| 92 |
+
image_path_ = archive_path / split / image_path
|
| 93 |
+
|
| 94 |
+
with open(image_path_.as_posix(), "rb") as f_image:
|
| 95 |
+
image_bytes = f_image.read()
|
| 96 |
+
yield idx, {
|
| 97 |
+
"image_id": image_path.name,
|
| 98 |
+
"image": {"path": image_path.as_posix(), "bytes": image_bytes},
|
| 99 |
+
"objects": objects,
|
| 100 |
+
"source": source,
|
| 101 |
+
}
|
| 102 |
+
idx += 1
|
| 103 |
+
source = 0
|
| 104 |
+
image_path = None
|
| 105 |
+
objects = list()
|
| 106 |
+
|
| 107 |
+
elif image_path is None:
|
| 108 |
+
image_path = Path(row)
|
| 109 |
+
else:
|
| 110 |
+
splits = row.split(",")
|
| 111 |
+
splits = [int(str(split).strip()) for split in splits]
|
| 112 |
+
objects.append({
|
| 113 |
+
"object_id": len(objects),
|
| 114 |
+
"bbox": splits[:4],
|
| 115 |
+
"category": _CATEGORIES[splits[4]],
|
| 116 |
+
})
|
| 117 |
+
source = splits[5]
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
if __name__ == '__main__':
|
| 121 |
+
pass
|