Update README.md
Browse files
README.md
CHANGED
|
@@ -1,37 +1,108 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
dataset_info:
|
| 4 |
-
features:
|
| 5 |
-
- name: id
|
| 6 |
-
dtype: string
|
| 7 |
-
- name: question
|
| 8 |
-
dtype: string
|
| 9 |
-
- name: context
|
| 10 |
-
dtype: string
|
| 11 |
-
- name: A
|
| 12 |
-
dtype: string
|
| 13 |
-
- name: B
|
| 14 |
-
dtype: string
|
| 15 |
-
- name: C
|
| 16 |
-
dtype: string
|
| 17 |
-
- name: D
|
| 18 |
-
dtype: string
|
| 19 |
-
- name: label
|
| 20 |
-
dtype: int64
|
| 21 |
-
splits:
|
| 22 |
-
- name: train
|
| 23 |
-
num_bytes: 63759933.69322235
|
| 24 |
-
num_examples: 2517
|
| 25 |
-
- name: test
|
| 26 |
-
num_bytes: 52057383.0
|
| 27 |
-
num_examples: 2086
|
| 28 |
-
download_size: 19849080
|
| 29 |
-
dataset_size: 115817316.69322234
|
| 30 |
-
configs:
|
| 31 |
-
- config_name: default
|
| 32 |
-
data_files:
|
| 33 |
-
- split: train
|
| 34 |
-
path: data/train-*
|
| 35 |
-
- split: test
|
| 36 |
-
path: data/test-*
|
| 37 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
dataset_info:
|
| 4 |
+
features:
|
| 5 |
+
- name: id
|
| 6 |
+
dtype: string
|
| 7 |
+
- name: question
|
| 8 |
+
dtype: string
|
| 9 |
+
- name: context
|
| 10 |
+
dtype: string
|
| 11 |
+
- name: A
|
| 12 |
+
dtype: string
|
| 13 |
+
- name: B
|
| 14 |
+
dtype: string
|
| 15 |
+
- name: C
|
| 16 |
+
dtype: string
|
| 17 |
+
- name: D
|
| 18 |
+
dtype: string
|
| 19 |
+
- name: label
|
| 20 |
+
dtype: int64
|
| 21 |
+
splits:
|
| 22 |
+
- name: train
|
| 23 |
+
num_bytes: 63759933.69322235
|
| 24 |
+
num_examples: 2517
|
| 25 |
+
- name: test
|
| 26 |
+
num_bytes: 52057383.0
|
| 27 |
+
num_examples: 2086
|
| 28 |
+
download_size: 19849080
|
| 29 |
+
dataset_size: 115817316.69322234
|
| 30 |
+
configs:
|
| 31 |
+
- config_name: default
|
| 32 |
+
data_files:
|
| 33 |
+
- split: train
|
| 34 |
+
path: data/train-*
|
| 35 |
+
- split: test
|
| 36 |
+
path: data/test-*
|
| 37 |
+
---
|
| 38 |
+
|
| 39 |
+
This dataset is derived from `tau/scrolls` [dataset](tau/scrolls) by running the following script:
|
| 40 |
+
|
| 41 |
+
```python
|
| 42 |
+
import re
|
| 43 |
+
|
| 44 |
+
from datasets import load_dataset
|
| 45 |
+
|
| 46 |
+
quality_dataset = load_dataset("tau/scrolls", "quality")
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def parse_example(example):
|
| 50 |
+
text = example["input"]
|
| 51 |
+
options = dict(re.findall(r"\((A|B|C|D)\) ([^\n]+)", text))
|
| 52 |
+
|
| 53 |
+
question_part, context = re.split(r"\(D\) [^\n]+\n", text, maxsplit=1)
|
| 54 |
+
question = re.sub(r"\([A-D]\) [^\n]+\n?", "", question_part).strip()
|
| 55 |
+
|
| 56 |
+
result = {"question": question, "context": context.strip(), **options}
|
| 57 |
+
|
| 58 |
+
if not all(key in result for key in ["A", "B", "C", "D"]):
|
| 59 |
+
raise ValueError("One or more options (A, B, C, D) are missing!")
|
| 60 |
+
|
| 61 |
+
# get label
|
| 62 |
+
label = -1
|
| 63 |
+
answer = example["output"]
|
| 64 |
+
if answer is None:
|
| 65 |
+
answer = ""
|
| 66 |
+
|
| 67 |
+
for idx, option in enumerate([options["A"], options["B"], options["C"], options["D"]]):
|
| 68 |
+
if answer.strip() == option.strip():
|
| 69 |
+
label = idx
|
| 70 |
+
|
| 71 |
+
result["label"] = label
|
| 72 |
+
return result
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
quality_dataset = quality_dataset.map(parse_example)
|
| 76 |
+
quality_dataset = quality_dataset.filter(lambda x: x["label"] >= 0)
|
| 77 |
+
|
| 78 |
+
train_ds = quality_dataset["train"].remove_columns(["pid", "input", "output"])
|
| 79 |
+
test_ds = quality_dataset["validation"].remove_columns(["pid", "input", "output"])
|
| 80 |
+
```
|
| 81 |
+
|
| 82 |
+
Specifically, only `quality` subset is kept and processed into MCQ format. The `test` split from original dataset is removed since it doesn't have ground truth labels.
|
| 83 |
+
Instead, validation split is assigned as test.
|
| 84 |
+
|
| 85 |
+
Number of examples in train: ~2.5k
|
| 86 |
+
Number of examples in test: ~2.1k
|
| 87 |
+
|
| 88 |
+
This dataset can be used to test performance of a model focusing on long contexts.
|
| 89 |
+
Input Tokens as per [llama2](bclavie/bert24_32k_tok_llama2) tokenizer: Mean -> 7.4k, SD: 2.3k, Max -> 11.6k
|
| 90 |
+
|
| 91 |
+
---
|
| 92 |
+
Relevant sections from the [SCROLLS: Standardized CompaRison Over Long Language Sequences paper](https://arxiv.org/pdf/2201.03533)
|
| 93 |
+
```
|
| 94 |
+
QuALITY (Pang et al., 2021): A multiplechoice question answering dataset over stories
|
| 95 |
+
and articles sourced from Project Gutenberg,10 the
|
| 96 |
+
Open American National Corpus (Fillmore et al.,
|
| 97 |
+
1998; Ide and Suderman, 2004), and more. Experienced writers wrote questions and distractors, and
|
| 98 |
+
were incentivized to write answerable, unambiguous questions such that in order to correctly answer
|
| 99 |
+
them, human annotators must read large portions
|
| 100 |
+
of the given document. To measure the difficulty
|
| 101 |
+
of their questions, Pang et al. conducted a speed
|
| 102 |
+
validation process, where another set of annotators
|
| 103 |
+
were asked to answer questions given only a short
|
| 104 |
+
period of time to skim through the document. As
|
| 105 |
+
a result, 50% of the questions in QuALITY are
|
| 106 |
+
labeled as hard, i.e. the majority of the annotators in the speed validation setting chose the wrong
|
| 107 |
+
answer.
|
| 108 |
+
```
|