shubham212 commited on
Commit
e554a1a
·
verified ·
1 Parent(s): 347ced6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +120 -3
README.md CHANGED
@@ -1,3 +1,120 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - image-classification
5
+ - image-segmentation
6
+ - image-feature-extraction
7
+ language:
8
+ - en
9
+ tags:
10
+ - medical
11
+ ---
12
+
13
+ # DDR-Augmented-Artifacts
14
+
15
+ ## Dataset Summary
16
+
17
+ **DDR-Augmented-Artifacts** provides fundus images augmented with realistic synthetic artifacts.
18
+ Artifacts were cropped from anonymized retina images showing reflections from blood vessels, segmented, and overlaid on DDR images using Gaussian feathered masks and Poisson blending.
19
+
20
+ ---
21
+
22
+ ## Example
23
+
24
+ Below is a sample visualization of how the dataset looks:
25
+
26
+ | Original DDR Image | Augmented with Artifact |
27
+ |--------------------|--------------------------|
28
+ | <img src="https://huggingface.co/datasets/shubham212/DR_Artifacts/resolve/main/images/original.jpg" width="250"/> | <img src="https://huggingface.co/datasets/shubham212/DR_Artifacts/resolve/main/images/augmented.png" width="250"/> |
29
+
30
+ ---
31
+
32
+ ## Code Repository
33
+
34
+ The dataset is accompanied by code for artifact generation, preprocessing, and training, available at:
35
+
36
+ 👉 [GitHub Repository](https://github.com/Shubham2376G/DR_Artifacts)
37
+
38
+ This repository contains:
39
+ - Scripts for generating synthetic artifacts
40
+ - Example U-Net model for artifact removal
41
+
42
+
43
+ ## Supported Tasks
44
+
45
+ - **Image Classification:** Train and evaluate DR classifiers on artifact-rich data.
46
+ - **Image Segmentation:** Evaluate lesion/DR segmentation robustness under artifacts.
47
+ - **Preprocessing / Artifact Removal:** Train models to **identify and remove imaging artifacts** prior to downstream analysis.
48
+
49
+ ---
50
+
51
+ ## Languages
52
+
53
+ - Image-based dataset (no natural language component).
54
+
55
+ ---
56
+
57
+ ## Dataset Structure
58
+
59
+ ### Data Fields
60
+ - `image_id`: filename of the image (string)
61
+ - `severity_level`: integer label (0–4) indicating DR severity
62
+ - **0** = No DR
63
+ - **1** = Mild
64
+ - **2** = Moderate
65
+ - **3** = Severe
66
+ - **4** = Proliferative DR
67
+
68
+ ### Data Splits
69
+ The dataset is provided as a flat collection of images with a CSV label file.
70
+ Users should generate **train/val/test splits** at the **patient level** to prevent data leakage.
71
+
72
+ ---
73
+
74
+
75
+ ## Intended Uses
76
+
77
+ - Research on **artifact robustness** in medical imaging AI.
78
+ - Developing augmentation pipelines for retinal image datasets.
79
+ - Training preprocessing modules to **detect and remove acquisition artifacts**.
80
+
81
+ ---
82
+
83
+ ## Limitations
84
+
85
+ - Synthetic artifacts may not capture full variability of real-world imaging conditions.
86
+ - Not intended for clinical use.
87
+
88
+ ---
89
+
90
+ ## Ethics and Privacy
91
+
92
+ - All patches were derived from fully anonymized personal retinal images.
93
+ - No patient-identifiable data is present.
94
+ - Dataset is for research purposes only.
95
+
96
+ ---
97
+
98
+ ## Citation
99
+
100
+ Please cite both the DDR dataset and this work:
101
+
102
+ ```bibtex
103
+ @article{LI2019,
104
+ title = "Diagnostic Assessment of Deep Learning Algorithms for Diabetic Retinopathy Screening",
105
+ author = "Tao Li and Yingqi Gao and Kai Wang and Song Guo and Hanruo Liu and Hong Kang",
106
+ journal = "Information Sciences",
107
+ volume = "501",
108
+ pages = "511 - 522",
109
+ year = "2019",
110
+ issn = "0020-0255",
111
+ doi = "https://doi.org/10.1016/j.ins.2019.06.011",
112
+ url = "http://www.sciencedirect.com/science/article/pii/S0020025519305377",
113
+ }
114
+
115
+ @misc{Aggarwal2025_arxiv,
116
+ title = DDR-Augmented-Artifacts: Synthetic Artifact Overlays for Robust Diabetic Retinopathy Models,
117
+ author = Shubham Aggarwal,
118
+ year = "2025",
119
+ url = https://arxiv.org/abs/XXXX.XXXXX
120
+ }