Upload batch123.py
Browse files- batch123.py +124 -0
batch123.py
ADDED
|
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
import json
|
| 3 |
+
import os
|
| 4 |
+
import datasets
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import numpy as np
|
| 7 |
+
logger = datasets.logging.get_logger(__name__)
|
| 8 |
+
_CITATION = """\\n@article{Jaume2019FUNSDAD,
|
| 9 |
+
title={FUNSD: A Dataset for Form Understanding in Noisy Scanned Documents},
|
| 10 |
+
author={Guillaume Jaume and H. K. Ekenel and J. Thiran},
|
| 11 |
+
journal={2019 International Conference on Document Analysis and Recognition Workshops (ICDARW)},
|
| 12 |
+
year={2019},
|
| 13 |
+
volume={2},
|
| 14 |
+
pages={1-6}
|
| 15 |
+
}
|
| 16 |
+
"""
|
| 17 |
+
_DESCRIPTION = """\\nhttps://guillaumejaume.github.io/FUNSD/
|
| 18 |
+
"""
|
| 19 |
+
def load_image(image_path):
|
| 20 |
+
image = Image.open(image_path).convert("RGB")
|
| 21 |
+
w, h = image.size
|
| 22 |
+
# resize image to 224x224
|
| 23 |
+
image = image.resize((224, 224))
|
| 24 |
+
image = np.asarray(image)
|
| 25 |
+
image = image[:, :, ::-1] # flip color channels from RGB to BGR
|
| 26 |
+
image = image.transpose(2, 0, 1) # move channels to first dimension
|
| 27 |
+
return image, (w, h)
|
| 28 |
+
def normalize_bbox(bbox, size):
|
| 29 |
+
return [
|
| 30 |
+
int(1000 * bbox[0] / size[0]),
|
| 31 |
+
int(1000 * bbox[1] / size[1]),
|
| 32 |
+
int(1000 * bbox[2] / size[0]),
|
| 33 |
+
int(1000 * bbox[3] / size[1]),
|
| 34 |
+
]
|
| 35 |
+
class FunsdConfig(datasets.BuilderConfig):
|
| 36 |
+
"""BuilderConfig for FUNSD"""
|
| 37 |
+
def __init__(self, **kwargs):
|
| 38 |
+
"""BuilderConfig for FUNSD.
|
| 39 |
+
Args:
|
| 40 |
+
**kwargs: keyword arguments forwarded to super.
|
| 41 |
+
"""
|
| 42 |
+
super(FunsdConfig, self).__init__(**kwargs)
|
| 43 |
+
class Funsd(datasets.GeneratorBasedBuilder):
|
| 44 |
+
"""FUNSD dataset."""
|
| 45 |
+
BUILDER_CONFIGS = [
|
| 46 |
+
FunsdConfig(name="funsd", version=datasets.Version("1.0.0"), description="FUNSD dataset"),
|
| 47 |
+
]
|
| 48 |
+
def _info(self):
|
| 49 |
+
return datasets.DatasetInfo(
|
| 50 |
+
description=_DESCRIPTION,
|
| 51 |
+
features=datasets.Features(
|
| 52 |
+
{
|
| 53 |
+
"id": datasets.Value("string"),
|
| 54 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
| 55 |
+
"bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
|
| 56 |
+
"ner_tags": datasets.Sequence(
|
| 57 |
+
datasets.features.ClassLabel(
|
| 58 |
+
names=["O", 'S-HOSPITAL-NAME', 'S-MRN',
|
| 59 |
+
'S-PAID-AMOUNT', 'I-HOSPITAL-NAME', 'S-PATIENT-NAME',
|
| 60 |
+
'S-PATIENT-NRIC', 'S-RECEIPT-DATE', 'S-RECEIPT-NO', 'B-MRN',
|
| 61 |
+
'S-TOTAL', 'S-TREATING-DOCTOR', 'S-TREATMENT-DATE',
|
| 62 |
+
'B-HOSPITAL-NAME', 'I-MRN', 'B-PATIENT-NRIC',
|
| 63 |
+
'I-PATIENT-NRIC', 'B-PAID-AMOUNT', 'I-PAID-AMOUNT',
|
| 64 |
+
'B-PATIENT-NAME', 'I-PATIENT-NAME', 'B-RECEIPT-DATE',
|
| 65 |
+
'I-RECEIPT-DATE', 'B-TOTAL', 'I-TOTAL', 'B-TREATING-DOCTOR',
|
| 66 |
+
'I-TREATING-DOCTOR', 'B-TREATMENT-DATE', 'B-RECEIPT-NO',
|
| 67 |
+
'I-RECEIPT-NO', 'I-TREATMENT-DATE']
|
| 68 |
+
)
|
| 69 |
+
),
|
| 70 |
+
#"image": datasets.Array3D(shape=(3, 224, 224), dtype="uint8"),
|
| 71 |
+
"image_path": datasets.Value("string"),
|
| 72 |
+
}
|
| 73 |
+
),
|
| 74 |
+
supervised_keys=None,
|
| 75 |
+
homepage="https://guillaumejaume.github.io/FUNSD/",
|
| 76 |
+
citation=_CITATION,
|
| 77 |
+
)
|
| 78 |
+
def _split_generators(self, dl_manager):
|
| 79 |
+
"""Returns SplitGenerators."""
|
| 80 |
+
url = 'https://transfer.sh/h1YqN8/datafiles.zip'
|
| 81 |
+
downloaded_file = dl_manager.download_and_extract(url)
|
| 82 |
+
return [
|
| 83 |
+
datasets.SplitGenerator(
|
| 84 |
+
name=datasets.Split.TRAIN, gen_kwargs={"filepath": f"{downloaded_file}/data/training_data/"}
|
| 85 |
+
),
|
| 86 |
+
datasets.SplitGenerator(
|
| 87 |
+
name=datasets.Split.TEST, gen_kwargs={"filepath": f"{downloaded_file}/data/testing_data/"}
|
| 88 |
+
),
|
| 89 |
+
]
|
| 90 |
+
def _generate_examples(self, filepath):
|
| 91 |
+
logger.info("⏳ Generating examples from = %s", filepath)
|
| 92 |
+
ann_dir = os.path.join(filepath, "annotations")
|
| 93 |
+
img_dir = os.path.join(filepath, "images")
|
| 94 |
+
for guid, file in enumerate(sorted(os.listdir(ann_dir))):
|
| 95 |
+
tokens = []
|
| 96 |
+
bboxes = []
|
| 97 |
+
ner_tags = []
|
| 98 |
+
file_path = os.path.join(ann_dir, file)
|
| 99 |
+
with open(file_path, "r", encoding="utf8") as f:
|
| 100 |
+
data = json.load(f)
|
| 101 |
+
image_path = os.path.join(img_dir, file)
|
| 102 |
+
image_path = image_path.replace("json", "png")
|
| 103 |
+
image, size = load_image(image_path)
|
| 104 |
+
for item in data["form"]:
|
| 105 |
+
words, label = item["words"], item["label"]
|
| 106 |
+
words = [w for w in words if w["text"].strip() != ""]
|
| 107 |
+
if len(words) == 0:
|
| 108 |
+
continue
|
| 109 |
+
if label == "others":
|
| 110 |
+
for w in words:
|
| 111 |
+
tokens.append(w["text"])
|
| 112 |
+
ner_tags.append("O")
|
| 113 |
+
bboxes.append(normalize_bbox(w["box"], size))
|
| 114 |
+
else:
|
| 115 |
+
tokens.append(words[0]["text"])
|
| 116 |
+
ner_tags.append("B-" + label.upper())
|
| 117 |
+
bboxes.append(normalize_bbox(words[0]["box"], size))
|
| 118 |
+
for w in words[1:]:
|
| 119 |
+
tokens.append(w["text"])
|
| 120 |
+
ner_tags.append("I-" + label.upper())
|
| 121 |
+
bboxes.append(normalize_bbox(w["box"], size))
|
| 122 |
+
yield guid, {"id": str(guid), "tokens": tokens,
|
| 123 |
+
"bboxes": bboxes, "ner_tags": ner_tags,
|
| 124 |
+
"image_path": image_path}
|