import cv2 import numpy as np from pathlib import Path from PIL import Image import json shots_dir = Path('data/shots') files = sorted(shots_dir.glob('sample-*.webp')) def sigmoid(x): return 1 / (1 + np.exp(-x)) def evaluate_length_penalty(len, mag = 0.0045): """Length penalty function based on sigmoid curves.""" x = len y = mag + -mag * sigmoid(0.58 * (x - 1.65)) + 0.25 * mag * sigmoid(2 * (x - 17)) return y # Two sigmoids — one dips around x=2, one rises around x=16 import matplotlib.pyplot as plt x = np.linspace(0, 40, 400) y = evaluate_length_penalty(x) plt.plot(x, y, 'k', lw=3) plt.axvline(4, color='k', lw=2) plt.axvline(16, color='k', lw=2) plt.text(0, -0.06, '0', ha='center', va='top', fontsize=12) plt.text(2, -0.06, '2', ha='center', va='top', fontsize=12) plt.text(16, -0.06, '16', ha='center', va='top', fontsize=12) # save the plot into length_penalty_plot.png plt.savefig('length_penalty_plot.png') plt.close() def extract_frames(webp_path): frames = [] with Image.open(webp_path) as im: try: while True: frame = im.convert('RGB') frames.append(np.array(frame)[:, :, ::-1]) # RGB to BGR im.seek(im.tell() + 1) except EOFError: pass return frames def compute_sim(f1, f2): assert f1.shape == f2.shape, f"Shape mismatch: {f1.shape} vs {f2.shape}" assert f1.shape[2] == 3, f"Expected 3 channels, got {f1.shape[2]}" assert f1.dtype == np.float32, f"Expected float32, got {f1.dtype}" assert f2.dtype == np.float32, f"Expected float32, got {f2.dtype}" # Flatten to 1D vectors v1 = f1.flatten() v2 = f2.flatten() eps = 1e-8 cos_sim = np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2) + eps) return cos_sim def detect_loops(frames, min_len=4, max_len=40, top_k=10): n = len(frames) candidates = [] # Preprocess frames: grayscale float32 and downscale to 128x128 (float32) processed_frames = [ cv2.resize(cv2.cvtColor(f, cv2.COLOR_BGR2GRAY).astype(np.float32), (128, 128), interpolation=cv2.INTER_AREA) for f in frames ] # Build 3-channel composite frames: R=prev, G=curr, B=next (looping) n = len(processed_frames) composite_frames = [] motion_energies = [] for idx in range(n): prev_idx = (idx - 1) % n next_idx = (idx + 1) % n r = processed_frames[prev_idx] g = processed_frames[idx] b = processed_frames[next_idx] composite = np.stack([r, g, b], axis=-1) composite_frames.append(composite) if idx == n - 1: motion_energies.append(0.0) else: # waving hand 0.97 # body shake 1.78 # running 15.0 # breathing 0.56 # talking 0.39 motion_energy = np.mean(np.abs(processed_frames[next_idx] - processed_frames[idx])) motion_energies.append(motion_energy) max_motion_energy = 20.0 normalized_motion_energies = [] for me in motion_energies: nme = min(me / max_motion_energy, 1.0) normalized_motion_energies.append(nme) for i in range(n): for j in range(i+min_len, min(i+max_len, n)): # Compare composite frames directly start_comp = composite_frames[i].astype(np.float32) end_comp = composite_frames[j].astype(np.float32) cos_sim = compute_sim(start_comp, end_comp) length_penalty = evaluate_length_penalty(j - i) motion_energy = motion_energies[i] nme = normalized_motion_energies[i] similarity_correction = (1.0 - cos_sim) * nme * 0.5 score = cos_sim + similarity_correction - length_penalty # Higher cosine similarity is better # print(f"Loop ({i},{j}): Cosine similarity={cos_sim:.4f} (t={t1-t0:.3f}s)") candidates.append((score, i, j, cos_sim, length_penalty, motion_energy)) # Sort by score descending candidates.sort(reverse=True) return candidates[:top_k] if __name__ == "__main__": # For batch processing, change the pattern below to 'sample-*.webp' or similar if not files: print('No files found.') import sys sys.exit(1) output_dir = Path('data/loops') output_dir.mkdir(parents=True, exist_ok=True) # import matplotlib.pyplot as plt for webp_path in files: print(f"Processing {webp_path}") frames = extract_frames(webp_path) print(f"Extracted {len(frames)} frames from {webp_path}") loops = detect_loops(frames) loop_json = [] for score, i, j, cos_sim, len_penalty, motion_energy in loops: loop_json.append({ "start": int(i), "end": int(j), "score": float(score), "cos_sim": float(cos_sim), "length": int(j - i), "length_penalty": float(len_penalty), "motion_energy": float(len_penalty) }) json_name = f"{webp_path.stem}.loop.json" json_path = output_dir / json_name with open(json_path, "w") as f: json.dump(loop_json, f, indent=2) print(f"Saved loop candidates: {json_path}") for idx, (score, i, j, cos_sim, len_penalty, motion_energy) in enumerate(loops): print(f"Loop candidate: start={i}, end={j}, score={score:.6f}, COS_SIM={cos_sim:.6f}, LEN={int(j - i)}, LEN_PENALTY={len_penalty:.6f}, MOTION_ENERGY={motion_energy:.6f}") if idx != 0: continue # For now, only save the top candidate # Extract loop frames (seamless looping: frames[i:j]) loop_frames = frames[i:j] # Convert BGR (OpenCV) to RGB for PIL pil_frames = [Image.fromarray(cv2.cvtColor(f, cv2.COLOR_BGR2RGB)) for f in loop_frames] # Save as animated webp out_name = f"{webp_path.stem}.loop.webp" out_path = output_dir / out_name pil_frames[0].save( out_path, save_all=True, append_images=pil_frames[1:], duration=40, # default duration, can be improved by extracting from original loop=0, lossless=True )