takarajordan commited on
Commit
3c5bb4b
·
verified ·
1 Parent(s): 1552de2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -2
README.md CHANGED
@@ -7,9 +7,15 @@ language:
7
  size_categories:
8
  - 1K<n<10K
9
  ---
 
 
 
 
10
  # FloodNet: High Resolution Aerial Imagery Dataset for Post-Flood Scene Understanding
11
 
12
- This is the HF hosted version of **FloodNet**.
 
 
13
 
14
  The **FloodNet 2021: A High Resolution Aerial Imagery Dataset for Post-Flood Scene Understanding** provides high-resolution UAS imageries with detailed semantic annotation regarding the damages. To advance the damage assessment process for post-disaster scenarios, the authors of the dataset presented a unique challenge considering **classification**, **semantic segmentation**, and **visual question answering (VQA)**, highlighting the UAS imagery-based FloodNet dataset.
15
 
@@ -17,7 +23,7 @@ The **FloodNet 2021: A High Resolution Aerial Imagery Dataset for Post-Flood Sce
17
 
18
  The Challenge has two tracks:
19
 
20
- 1. **Image Classification and Semantic Segmentation** (available on DatasetNinja)
21
  2. **Visual Question Answering** (current)
22
 
23
  ---
@@ -65,3 +71,19 @@ The presented dataset contains annotations from **Track 2**. For the **Visual Qu
65
  _For example: "Is there any flooded road?"_
66
 
67
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  size_categories:
8
  - 1K<n<10K
9
  ---
10
+ Here is your updated markdown-formatted text with the image, links, and citation added:
11
+
12
+ ---
13
+
14
  # FloodNet: High Resolution Aerial Imagery Dataset for Post-Flood Scene Understanding
15
 
16
+ This is the HF-hosted version of **FloodNet**.
17
+
18
+ ![FloodNet Image](https://huggingface.co/datasets/takara-ai/FloodNet_2021-Track_2_Dataset_HF/resolve/main/train_image/img/6340.JPG)
19
 
20
  The **FloodNet 2021: A High Resolution Aerial Imagery Dataset for Post-Flood Scene Understanding** provides high-resolution UAS imageries with detailed semantic annotation regarding the damages. To advance the damage assessment process for post-disaster scenarios, the authors of the dataset presented a unique challenge considering **classification**, **semantic segmentation**, and **visual question answering (VQA)**, highlighting the UAS imagery-based FloodNet dataset.
21
 
 
23
 
24
  The Challenge has two tracks:
25
 
26
+ 1. **Image Classification and Semantic Segmentation** (available on [DatasetNinja](https://datasetninja.com/floodnet-track-2))
27
  2. **Visual Question Answering** (current)
28
 
29
  ---
 
71
  _For example: "Is there any flooded road?"_
72
 
73
  ---
74
+
75
+ ## Citation
76
+
77
+ If you use FloodNet in your work, please cite the following paper:
78
+
79
+ ```bibtex
80
+ @misc{rahnemoonfar2020floodnet,
81
+ title={FloodNet: A High Resolution Aerial Imagery Dataset for Post Flood Scene Understanding},
82
+ author={Maryam Rahnemoonfar and Tashnim Chowdhury and Argho Sarkar and Debvrat Varshney and Masoud Yari and Robin Murphy},
83
+ year={2020},
84
+ eprint={2012.02951},
85
+ archivePrefix={arXiv},
86
+ primaryClass={cs.CV},
87
+ doi={10.48550/arXiv.2012.02951}
88
+ }
89
+ ```