|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """RedPajama: An Open-Source, Clean-Room 1.2 Trillion Token Dataset.""" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import json | 
					
						
						|  |  | 
					
						
						|  | import datasets | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = datasets.logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _DESCRIPTION = """\ | 
					
						
						|  | RedPajama is a clean-room, fully open-source implementation of the LLaMa dataset. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _URL_LISTS = { | 
					
						
						|  | "arxiv": "urls/arxiv.txt", | 
					
						
						|  | "book": "urls/book.txt", | 
					
						
						|  | "c4": "urls/c4.txt", | 
					
						
						|  | "common_crawl": "urls/common_crawl.txt", | 
					
						
						|  | "github": "urls/github.txt", | 
					
						
						|  | "stackexchange": "urls/stackexchange.txt", | 
					
						
						|  | "wikipedia": "urls/wikipedia.txt", | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class RedPajama1TConfig(datasets.BuilderConfig): | 
					
						
						|  | """BuilderConfig for RedPajama sample.""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, *args, subsets, **kwargs): | 
					
						
						|  | """BuilderConfig for RedPajama. | 
					
						
						|  | Args: | 
					
						
						|  | **kwargs: keyword arguments forwarded to super. | 
					
						
						|  | """ | 
					
						
						|  | super(RedPajama1TConfig, self).__init__(**kwargs) | 
					
						
						|  |  | 
					
						
						|  | self.subsets = subsets | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class RedPajama1T(datasets.GeneratorBasedBuilder): | 
					
						
						|  | """SQUAD: The Stanford Question Answering Dataset. Version 1.1.""" | 
					
						
						|  |  | 
					
						
						|  | BUILDER_CONFIGS = [ | 
					
						
						|  | RedPajama1TConfig( | 
					
						
						|  | subsets = list(_URL_LISTS.keys()), | 
					
						
						|  | name="plain_text", | 
					
						
						|  | version=datasets.Version("1.0.0", ""), | 
					
						
						|  | description="Plain text", | 
					
						
						|  | ), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def _info(self): | 
					
						
						|  | return datasets.DatasetInfo( | 
					
						
						|  | description=_DESCRIPTION, | 
					
						
						|  | features=datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "text": datasets.Value("string"), | 
					
						
						|  | "meta": datasets.Value("string"), | 
					
						
						|  | "red_pajama_subset": datasets.Value("string"), | 
					
						
						|  | } | 
					
						
						|  | ), | 
					
						
						|  | supervised_keys=None, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _split_generators(self, dl_manager): | 
					
						
						|  | url_lists = dl_manager.download_and_extract({ | 
					
						
						|  | subset: _URL_LISTS[subset] for subset in self.config.subsets | 
					
						
						|  | }) | 
					
						
						|  |  | 
					
						
						|  | urls = {} | 
					
						
						|  |  | 
					
						
						|  | for subset, url_list in url_lists.items(): | 
					
						
						|  | with open(url_list, encoding="utf-8") as f: | 
					
						
						|  | urls[subset] = [line.strip() for line in f][:1] | 
					
						
						|  |  | 
					
						
						|  | downloaded_files = dl_manager.download(urls) | 
					
						
						|  |  | 
					
						
						|  | return [ | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=datasets.Split.TRAIN, | 
					
						
						|  | gen_kwargs = { | 
					
						
						|  | "files": { | 
					
						
						|  | subset: downloaded_files[subset] | 
					
						
						|  | for subset in self.config.subsets | 
					
						
						|  | } | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def _generate_examples(self, files): | 
					
						
						|  | """This function returns the examples in the raw (text) form.""" | 
					
						
						|  | key = 0 | 
					
						
						|  | for subset in files: | 
					
						
						|  | if subset == "common_crawl": | 
					
						
						|  | import zstandard as zstd | 
					
						
						|  |  | 
					
						
						|  | for path in files[subset]: | 
					
						
						|  | with zstd.open(open(path, "rb"), "rt", encoding="utf-8") as f: | 
					
						
						|  | for i, row in enumerate(f): | 
					
						
						|  | data = json.loads(row) | 
					
						
						|  | text = data["text"] | 
					
						
						|  | del data["text"] | 
					
						
						|  | yield key, { | 
					
						
						|  | "text": text, | 
					
						
						|  | "meta": json.dumps(data), | 
					
						
						|  | "red_pajama_subset": subset, | 
					
						
						|  | } | 
					
						
						|  | key += 1 | 
					
						
						|  | else: | 
					
						
						|  | for path in files[subset]: | 
					
						
						|  | with open(path, encoding="utf-8") as f: | 
					
						
						|  | for i, row in enumerate(f): | 
					
						
						|  | data = json.loads(row) | 
					
						
						|  | yield key, { | 
					
						
						|  | "text": data["text"], | 
					
						
						|  | "meta": data["meta"], | 
					
						
						|  | "red_pajama_subset": subset, | 
					
						
						|  | } | 
					
						
						|  | key += 1 | 
					
						
						|  |  |