update notebooks
Browse files- add_image.ipynb +393 -0
- doc-image-10.parquet +3 -0
- merge.ipynb +0 -0
add_image.ipynb
ADDED
|
@@ -0,0 +1,393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"from datasets import load_dataset\n",
|
| 10 |
+
"\n",
|
| 11 |
+
"dataset = load_dataset(\"dnth/pets-enriched\")"
|
| 12 |
+
]
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"cell_type": "code",
|
| 16 |
+
"execution_count": 2,
|
| 17 |
+
"metadata": {},
|
| 18 |
+
"outputs": [
|
| 19 |
+
{
|
| 20 |
+
"data": {
|
| 21 |
+
"text/plain": [
|
| 22 |
+
"{'filename': Value(dtype='string', id=None),\n",
|
| 23 |
+
" 'caption': Value(dtype='string', id=None),\n",
|
| 24 |
+
" 'image_labels': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None),\n",
|
| 25 |
+
" 'objects': [{'bbox': Sequence(feature=Value(dtype='float64', id=None), length=-1, id=None),\n",
|
| 26 |
+
" 'confidence': Value(dtype='float64', id=None),\n",
|
| 27 |
+
" 'label': Value(dtype='string', id=None)}]}"
|
| 28 |
+
]
|
| 29 |
+
},
|
| 30 |
+
"execution_count": 2,
|
| 31 |
+
"metadata": {},
|
| 32 |
+
"output_type": "execute_result"
|
| 33 |
+
}
|
| 34 |
+
],
|
| 35 |
+
"source": [
|
| 36 |
+
"dataset['train'].features"
|
| 37 |
+
]
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"cell_type": "code",
|
| 41 |
+
"execution_count": 3,
|
| 42 |
+
"metadata": {},
|
| 43 |
+
"outputs": [
|
| 44 |
+
{
|
| 45 |
+
"data": {
|
| 46 |
+
"text/plain": [
|
| 47 |
+
"{'filename': 'oxford-iiit-pet/images/Abyssinian_144.jpg',\n",
|
| 48 |
+
" 'caption': 'a cat standing on a wooden floor next to a glass',\n",
|
| 49 |
+
" 'image_labels': ['cat'],\n",
|
| 50 |
+
" 'objects': [{'bbox': [91.0, 13.0, 408.0, 345.0],\n",
|
| 51 |
+
" 'confidence': 0.9800000190734863,\n",
|
| 52 |
+
" 'label': 'cat'}]}"
|
| 53 |
+
]
|
| 54 |
+
},
|
| 55 |
+
"execution_count": 3,
|
| 56 |
+
"metadata": {},
|
| 57 |
+
"output_type": "execute_result"
|
| 58 |
+
}
|
| 59 |
+
],
|
| 60 |
+
"source": [
|
| 61 |
+
"dataset['train'][0]"
|
| 62 |
+
]
|
| 63 |
+
},
|
| 64 |
+
{
|
| 65 |
+
"cell_type": "code",
|
| 66 |
+
"execution_count": 4,
|
| 67 |
+
"metadata": {},
|
| 68 |
+
"outputs": [
|
| 69 |
+
{
|
| 70 |
+
"data": {
|
| 71 |
+
"text/plain": [
|
| 72 |
+
"{'filename': 'oxford-iiit-pet/images/Abyssinian_100.jpg',\n",
|
| 73 |
+
" 'caption': 'a cat is sitting in a bag',\n",
|
| 74 |
+
" 'image_labels': ['cat'],\n",
|
| 75 |
+
" 'objects': [{'bbox': [48.0, 72.0, 288.0, 371.0],\n",
|
| 76 |
+
" 'confidence': 0.9539999961853027,\n",
|
| 77 |
+
" 'label': 'cat'},\n",
|
| 78 |
+
" {'bbox': [0.0, 31.0, 148.0, 92.0],\n",
|
| 79 |
+
" 'confidence': 0.4880000054836273,\n",
|
| 80 |
+
" 'label': 'strap'},\n",
|
| 81 |
+
" {'bbox': [241.0, 341.0, 153.0, 160.0],\n",
|
| 82 |
+
" 'confidence': 0.4309999942779541,\n",
|
| 83 |
+
" 'label': 'strap'},\n",
|
| 84 |
+
" {'bbox': [193.0, 1.0, 202.0, 179.0],\n",
|
| 85 |
+
" 'confidence': 0.3700000047683716,\n",
|
| 86 |
+
" 'label': 'pillow'}]}"
|
| 87 |
+
]
|
| 88 |
+
},
|
| 89 |
+
"execution_count": 4,
|
| 90 |
+
"metadata": {},
|
| 91 |
+
"output_type": "execute_result"
|
| 92 |
+
}
|
| 93 |
+
],
|
| 94 |
+
"source": [
|
| 95 |
+
"dataset['train'][10]"
|
| 96 |
+
]
|
| 97 |
+
},
|
| 98 |
+
{
|
| 99 |
+
"cell_type": "code",
|
| 100 |
+
"execution_count": 5,
|
| 101 |
+
"metadata": {},
|
| 102 |
+
"outputs": [],
|
| 103 |
+
"source": [
|
| 104 |
+
"import os\n",
|
| 105 |
+
"from PIL import Image\n",
|
| 106 |
+
"import io\n",
|
| 107 |
+
"import datasets\n",
|
| 108 |
+
"\n",
|
| 109 |
+
"def load_image(example):\n",
|
| 110 |
+
" image_path = example['filename'] # Assuming 'filename' contains the path\n",
|
| 111 |
+
" if os.path.exists(image_path):\n",
|
| 112 |
+
" with Image.open(image_path) as img:\n",
|
| 113 |
+
" buf = io.BytesIO()\n",
|
| 114 |
+
" img.save(buf, format='PNG')\n",
|
| 115 |
+
" example['image'] = buf.getvalue()\n",
|
| 116 |
+
" else:\n",
|
| 117 |
+
" example['image'] = None\n",
|
| 118 |
+
" return example\n",
|
| 119 |
+
"\n",
|
| 120 |
+
"# Assuming your dataset is called 'dataset'\n",
|
| 121 |
+
"dataset = dataset.map(load_image)\n",
|
| 122 |
+
"\n",
|
| 123 |
+
"# Update the features of the dataset\n",
|
| 124 |
+
"dataset = dataset.cast_column(\"image\", datasets.Image())"
|
| 125 |
+
]
|
| 126 |
+
},
|
| 127 |
+
{
|
| 128 |
+
"cell_type": "code",
|
| 129 |
+
"execution_count": 6,
|
| 130 |
+
"metadata": {},
|
| 131 |
+
"outputs": [
|
| 132 |
+
{
|
| 133 |
+
"data": {
|
| 134 |
+
"text/plain": [
|
| 135 |
+
"Dataset({\n",
|
| 136 |
+
" features: ['filename', 'caption', 'image_labels', 'objects', 'image'],\n",
|
| 137 |
+
" num_rows: 7275\n",
|
| 138 |
+
"})"
|
| 139 |
+
]
|
| 140 |
+
},
|
| 141 |
+
"execution_count": 6,
|
| 142 |
+
"metadata": {},
|
| 143 |
+
"output_type": "execute_result"
|
| 144 |
+
}
|
| 145 |
+
],
|
| 146 |
+
"source": [
|
| 147 |
+
"dataset['train']"
|
| 148 |
+
]
|
| 149 |
+
},
|
| 150 |
+
{
|
| 151 |
+
"cell_type": "code",
|
| 152 |
+
"execution_count": 10,
|
| 153 |
+
"metadata": {},
|
| 154 |
+
"outputs": [
|
| 155 |
+
{
|
| 156 |
+
"data": {
|
| 157 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 158 |
+
"model_id": "f35fb0f0588e477b985cc75dfdc00569",
|
| 159 |
+
"version_major": 2,
|
| 160 |
+
"version_minor": 0
|
| 161 |
+
},
|
| 162 |
+
"text/plain": [
|
| 163 |
+
"Uploading the dataset shards: 0%| | 0/5 [00:00<?, ?it/s]"
|
| 164 |
+
]
|
| 165 |
+
},
|
| 166 |
+
"metadata": {},
|
| 167 |
+
"output_type": "display_data"
|
| 168 |
+
},
|
| 169 |
+
{
|
| 170 |
+
"data": {
|
| 171 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 172 |
+
"model_id": "ca299917858a4d9e8b2264da5c609be1",
|
| 173 |
+
"version_major": 2,
|
| 174 |
+
"version_minor": 0
|
| 175 |
+
},
|
| 176 |
+
"text/plain": [
|
| 177 |
+
"Map: 0%| | 0/1455 [00:00<?, ? examples/s]"
|
| 178 |
+
]
|
| 179 |
+
},
|
| 180 |
+
"metadata": {},
|
| 181 |
+
"output_type": "display_data"
|
| 182 |
+
},
|
| 183 |
+
{
|
| 184 |
+
"data": {
|
| 185 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 186 |
+
"model_id": "21e2c7755e1c4890b8710a0fc3fb2e25",
|
| 187 |
+
"version_major": 2,
|
| 188 |
+
"version_minor": 0
|
| 189 |
+
},
|
| 190 |
+
"text/plain": [
|
| 191 |
+
"Creating parquet from Arrow format: 0%| | 0/15 [00:00<?, ?ba/s]"
|
| 192 |
+
]
|
| 193 |
+
},
|
| 194 |
+
"metadata": {},
|
| 195 |
+
"output_type": "display_data"
|
| 196 |
+
},
|
| 197 |
+
{
|
| 198 |
+
"data": {
|
| 199 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 200 |
+
"model_id": "05c256e8a8b54c4a8a9c905f7fcf78ab",
|
| 201 |
+
"version_major": 2,
|
| 202 |
+
"version_minor": 0
|
| 203 |
+
},
|
| 204 |
+
"text/plain": [
|
| 205 |
+
"Map: 0%| | 0/1455 [00:00<?, ? examples/s]"
|
| 206 |
+
]
|
| 207 |
+
},
|
| 208 |
+
"metadata": {},
|
| 209 |
+
"output_type": "display_data"
|
| 210 |
+
},
|
| 211 |
+
{
|
| 212 |
+
"data": {
|
| 213 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 214 |
+
"model_id": "0aa862e525f8403fa1489c11a08d9626",
|
| 215 |
+
"version_major": 2,
|
| 216 |
+
"version_minor": 0
|
| 217 |
+
},
|
| 218 |
+
"text/plain": [
|
| 219 |
+
"Creating parquet from Arrow format: 0%| | 0/15 [00:00<?, ?ba/s]"
|
| 220 |
+
]
|
| 221 |
+
},
|
| 222 |
+
"metadata": {},
|
| 223 |
+
"output_type": "display_data"
|
| 224 |
+
},
|
| 225 |
+
{
|
| 226 |
+
"data": {
|
| 227 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 228 |
+
"model_id": "1ae4a025e0a54f92a7932a2bfe104789",
|
| 229 |
+
"version_major": 2,
|
| 230 |
+
"version_minor": 0
|
| 231 |
+
},
|
| 232 |
+
"text/plain": [
|
| 233 |
+
"Map: 0%| | 0/1455 [00:00<?, ? examples/s]"
|
| 234 |
+
]
|
| 235 |
+
},
|
| 236 |
+
"metadata": {},
|
| 237 |
+
"output_type": "display_data"
|
| 238 |
+
},
|
| 239 |
+
{
|
| 240 |
+
"data": {
|
| 241 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 242 |
+
"model_id": "da530e1109d6437dbdd39fe40e091724",
|
| 243 |
+
"version_major": 2,
|
| 244 |
+
"version_minor": 0
|
| 245 |
+
},
|
| 246 |
+
"text/plain": [
|
| 247 |
+
"Creating parquet from Arrow format: 0%| | 0/15 [00:00<?, ?ba/s]"
|
| 248 |
+
]
|
| 249 |
+
},
|
| 250 |
+
"metadata": {},
|
| 251 |
+
"output_type": "display_data"
|
| 252 |
+
},
|
| 253 |
+
{
|
| 254 |
+
"data": {
|
| 255 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 256 |
+
"model_id": "9b71da5cc1cb4f12af4b04fc5597e4d1",
|
| 257 |
+
"version_major": 2,
|
| 258 |
+
"version_minor": 0
|
| 259 |
+
},
|
| 260 |
+
"text/plain": [
|
| 261 |
+
"Map: 0%| | 0/1455 [00:00<?, ? examples/s]"
|
| 262 |
+
]
|
| 263 |
+
},
|
| 264 |
+
"metadata": {},
|
| 265 |
+
"output_type": "display_data"
|
| 266 |
+
},
|
| 267 |
+
{
|
| 268 |
+
"data": {
|
| 269 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 270 |
+
"model_id": "a3f3ec986b044612a653fc7e27faa3b0",
|
| 271 |
+
"version_major": 2,
|
| 272 |
+
"version_minor": 0
|
| 273 |
+
},
|
| 274 |
+
"text/plain": [
|
| 275 |
+
"Creating parquet from Arrow format: 0%| | 0/15 [00:00<?, ?ba/s]"
|
| 276 |
+
]
|
| 277 |
+
},
|
| 278 |
+
"metadata": {},
|
| 279 |
+
"output_type": "display_data"
|
| 280 |
+
},
|
| 281 |
+
{
|
| 282 |
+
"data": {
|
| 283 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 284 |
+
"model_id": "8761c776867044e0a39c5be67b5e4536",
|
| 285 |
+
"version_major": 2,
|
| 286 |
+
"version_minor": 0
|
| 287 |
+
},
|
| 288 |
+
"text/plain": [
|
| 289 |
+
"Map: 0%| | 0/1455 [00:00<?, ? examples/s]"
|
| 290 |
+
]
|
| 291 |
+
},
|
| 292 |
+
"metadata": {},
|
| 293 |
+
"output_type": "display_data"
|
| 294 |
+
},
|
| 295 |
+
{
|
| 296 |
+
"data": {
|
| 297 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 298 |
+
"model_id": "2d64775cae0e46c2b96db080977f7caf",
|
| 299 |
+
"version_major": 2,
|
| 300 |
+
"version_minor": 0
|
| 301 |
+
},
|
| 302 |
+
"text/plain": [
|
| 303 |
+
"Creating parquet from Arrow format: 0%| | 0/15 [00:00<?, ?ba/s]"
|
| 304 |
+
]
|
| 305 |
+
},
|
| 306 |
+
"metadata": {},
|
| 307 |
+
"output_type": "display_data"
|
| 308 |
+
},
|
| 309 |
+
{
|
| 310 |
+
"data": {
|
| 311 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 312 |
+
"model_id": "81348e1aa35f41b9b68e178c9f7fd203",
|
| 313 |
+
"version_major": 2,
|
| 314 |
+
"version_minor": 0
|
| 315 |
+
},
|
| 316 |
+
"text/plain": [
|
| 317 |
+
"README.md: 0%| | 0.00/478 [00:00<?, ?B/s]"
|
| 318 |
+
]
|
| 319 |
+
},
|
| 320 |
+
"metadata": {},
|
| 321 |
+
"output_type": "display_data"
|
| 322 |
+
},
|
| 323 |
+
{
|
| 324 |
+
"data": {
|
| 325 |
+
"text/plain": [
|
| 326 |
+
"CommitInfo(commit_url='https://huggingface.co/datasets/dnth/pets-enriched/commit/1e0711eae3c228b4bdd45096d28ae167f1ae49e7', commit_message='Upload dataset', commit_description='', oid='1e0711eae3c228b4bdd45096d28ae167f1ae49e7', pr_url=None, pr_revision=None, pr_num=None)"
|
| 327 |
+
]
|
| 328 |
+
},
|
| 329 |
+
"execution_count": 10,
|
| 330 |
+
"metadata": {},
|
| 331 |
+
"output_type": "execute_result"
|
| 332 |
+
}
|
| 333 |
+
],
|
| 334 |
+
"source": [
|
| 335 |
+
"dataset.push_to_hub('dnth/pets-enriched')"
|
| 336 |
+
]
|
| 337 |
+
},
|
| 338 |
+
{
|
| 339 |
+
"cell_type": "code",
|
| 340 |
+
"execution_count": 9,
|
| 341 |
+
"metadata": {},
|
| 342 |
+
"outputs": [
|
| 343 |
+
{
|
| 344 |
+
"data": {
|
| 345 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 346 |
+
"model_id": "421ffbe1dea442bc956d20ccedc539f8",
|
| 347 |
+
"version_major": 2,
|
| 348 |
+
"version_minor": 0
|
| 349 |
+
},
|
| 350 |
+
"text/plain": [
|
| 351 |
+
"VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
|
| 352 |
+
]
|
| 353 |
+
},
|
| 354 |
+
"metadata": {},
|
| 355 |
+
"output_type": "display_data"
|
| 356 |
+
}
|
| 357 |
+
],
|
| 358 |
+
"source": [
|
| 359 |
+
"from huggingface_hub import login\n",
|
| 360 |
+
"\n",
|
| 361 |
+
"login()"
|
| 362 |
+
]
|
| 363 |
+
},
|
| 364 |
+
{
|
| 365 |
+
"cell_type": "code",
|
| 366 |
+
"execution_count": null,
|
| 367 |
+
"metadata": {},
|
| 368 |
+
"outputs": [],
|
| 369 |
+
"source": []
|
| 370 |
+
}
|
| 371 |
+
],
|
| 372 |
+
"metadata": {
|
| 373 |
+
"kernelspec": {
|
| 374 |
+
"display_name": "Python 3",
|
| 375 |
+
"language": "python",
|
| 376 |
+
"name": "python3"
|
| 377 |
+
},
|
| 378 |
+
"language_info": {
|
| 379 |
+
"codemirror_mode": {
|
| 380 |
+
"name": "ipython",
|
| 381 |
+
"version": 3
|
| 382 |
+
},
|
| 383 |
+
"file_extension": ".py",
|
| 384 |
+
"mimetype": "text/x-python",
|
| 385 |
+
"name": "python",
|
| 386 |
+
"nbconvert_exporter": "python",
|
| 387 |
+
"pygments_lexer": "ipython3",
|
| 388 |
+
"version": "3.10.12"
|
| 389 |
+
}
|
| 390 |
+
},
|
| 391 |
+
"nbformat": 4,
|
| 392 |
+
"nbformat_minor": 2
|
| 393 |
+
}
|
doc-image-10.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:31d22c17d8178238571741400429875d3e7d23d23cef144affcfb3df3af0869c
|
| 3 |
+
size 224379
|
merge.ipynb
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|