Upload caption_map.ipynb
Browse files- caption_map.ipynb +154 -0
caption_map.ipynb
ADDED
|
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [
|
| 8 |
+
{
|
| 9 |
+
"data": {
|
| 10 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 11 |
+
"model_id": "0dd1298de3c84ea3ab8ed31b2a0b2888",
|
| 12 |
+
"version_major": 2,
|
| 13 |
+
"version_minor": 0
|
| 14 |
+
},
|
| 15 |
+
"text/plain": [
|
| 16 |
+
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
| 17 |
+
]
|
| 18 |
+
},
|
| 19 |
+
"metadata": {},
|
| 20 |
+
"output_type": "display_data"
|
| 21 |
+
}
|
| 22 |
+
],
|
| 23 |
+
"source": [
|
| 24 |
+
"import torch\n",
|
| 25 |
+
"from multiprocessing import set_start_method\n",
|
| 26 |
+
"from transformers import Blip2Processor, Blip2ForConditionalGeneration\n",
|
| 27 |
+
"from datasets import load_dataset\n",
|
| 28 |
+
"\n",
|
| 29 |
+
"# Load BLIP-2 model and processor\n",
|
| 30 |
+
"processor = Blip2Processor.from_pretrained(\"Salesforce/blip2-opt-2.7b\")\n",
|
| 31 |
+
"model = Blip2ForConditionalGeneration.from_pretrained(\"Salesforce/blip2-opt-2.7b\", torch_dtype=torch.float16)"
|
| 32 |
+
]
|
| 33 |
+
},
|
| 34 |
+
{
|
| 35 |
+
"cell_type": "code",
|
| 36 |
+
"execution_count": 11,
|
| 37 |
+
"metadata": {},
|
| 38 |
+
"outputs": [],
|
| 39 |
+
"source": [
|
| 40 |
+
"def gpu_computation(batch, rank):\n",
|
| 41 |
+
" device = f\"cuda:{(rank or 0) % torch.cuda.device_count()}\"\n",
|
| 42 |
+
" model.to(device)\n",
|
| 43 |
+
" inputs = processor(images=batch[\"image\"], return_tensors=\"pt\").to(device, torch.float16)\n",
|
| 44 |
+
"\n",
|
| 45 |
+
" with torch.no_grad():\n",
|
| 46 |
+
" generated_ids = model.generate(**inputs, max_length=51)\n",
|
| 47 |
+
" \n",
|
| 48 |
+
" batch[\"caption\"] = processor.batch_decode(generated_ids, skip_special_tokens=True)\n",
|
| 49 |
+
" return batch"
|
| 50 |
+
]
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"cell_type": "code",
|
| 54 |
+
"execution_count": 12,
|
| 55 |
+
"metadata": {},
|
| 56 |
+
"outputs": [
|
| 57 |
+
{
|
| 58 |
+
"data": {
|
| 59 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 60 |
+
"model_id": "61fe62d696904a7c894bd2c6f082b426",
|
| 61 |
+
"version_major": 2,
|
| 62 |
+
"version_minor": 0
|
| 63 |
+
},
|
| 64 |
+
"text/plain": [
|
| 65 |
+
"Map: 0%| | 0/10 [00:00<?, ? examples/s]"
|
| 66 |
+
]
|
| 67 |
+
},
|
| 68 |
+
"metadata": {},
|
| 69 |
+
"output_type": "display_data"
|
| 70 |
+
}
|
| 71 |
+
],
|
| 72 |
+
"source": [
|
| 73 |
+
"import multiprocessing\n",
|
| 74 |
+
"\n",
|
| 75 |
+
"\n",
|
| 76 |
+
"if __name__ == \"__main__\":\n",
|
| 77 |
+
" # Check if start method is already set\n",
|
| 78 |
+
" try:\n",
|
| 79 |
+
" multiprocessing.get_start_method()\n",
|
| 80 |
+
" except RuntimeError:\n",
|
| 81 |
+
" multiprocessing.set_start_method(\"spawn\")\n",
|
| 82 |
+
"\n",
|
| 83 |
+
" # Load your dataset\n",
|
| 84 |
+
" dataset = load_dataset(\"visual-layer/oxford-iiit-pet-vl-enriched\", split=\"train\")\n",
|
| 85 |
+
" dataset = dataset.select(range(10))\n",
|
| 86 |
+
"\n",
|
| 87 |
+
" updated_dataset = dataset.map(\n",
|
| 88 |
+
" gpu_computation,\n",
|
| 89 |
+
" batched=True,\n",
|
| 90 |
+
" batch_size=4, # Adjust based on your GPU memory\n",
|
| 91 |
+
" with_rank=True,\n",
|
| 92 |
+
" num_proc=torch.cuda.device_count(), # one process per GPU\n",
|
| 93 |
+
" )"
|
| 94 |
+
]
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"cell_type": "code",
|
| 98 |
+
"execution_count": 13,
|
| 99 |
+
"metadata": {},
|
| 100 |
+
"outputs": [
|
| 101 |
+
{
|
| 102 |
+
"data": {
|
| 103 |
+
"text/plain": [
|
| 104 |
+
"['a cat walking on grass\\n',\n",
|
| 105 |
+
" 'a white dog playing with a ball\\n',\n",
|
| 106 |
+
" 'a dog sitting in the grass\\n',\n",
|
| 107 |
+
" 'a dog laying in the grass\\n',\n",
|
| 108 |
+
" 'a dog standing in the snow\\n',\n",
|
| 109 |
+
" 'a dog laying in the grass\\n',\n",
|
| 110 |
+
" 'a dog laying on a brick sidewalk\\n',\n",
|
| 111 |
+
" 'a man holding a black dog\\n',\n",
|
| 112 |
+
" 'a large dog standing in the grass\\n',\n",
|
| 113 |
+
" 'a pug dog with its tongue out standing on a tiled floor\\n']"
|
| 114 |
+
]
|
| 115 |
+
},
|
| 116 |
+
"execution_count": 13,
|
| 117 |
+
"metadata": {},
|
| 118 |
+
"output_type": "execute_result"
|
| 119 |
+
}
|
| 120 |
+
],
|
| 121 |
+
"source": [
|
| 122 |
+
"updated_dataset['caption']"
|
| 123 |
+
]
|
| 124 |
+
},
|
| 125 |
+
{
|
| 126 |
+
"cell_type": "code",
|
| 127 |
+
"execution_count": null,
|
| 128 |
+
"metadata": {},
|
| 129 |
+
"outputs": [],
|
| 130 |
+
"source": []
|
| 131 |
+
}
|
| 132 |
+
],
|
| 133 |
+
"metadata": {
|
| 134 |
+
"kernelspec": {
|
| 135 |
+
"display_name": "Python 3",
|
| 136 |
+
"language": "python",
|
| 137 |
+
"name": "python3"
|
| 138 |
+
},
|
| 139 |
+
"language_info": {
|
| 140 |
+
"codemirror_mode": {
|
| 141 |
+
"name": "ipython",
|
| 142 |
+
"version": 3
|
| 143 |
+
},
|
| 144 |
+
"file_extension": ".py",
|
| 145 |
+
"mimetype": "text/x-python",
|
| 146 |
+
"name": "python",
|
| 147 |
+
"nbconvert_exporter": "python",
|
| 148 |
+
"pygments_lexer": "ipython3",
|
| 149 |
+
"version": "3.10.12"
|
| 150 |
+
}
|
| 151 |
+
},
|
| 152 |
+
"nbformat": 4,
|
| 153 |
+
"nbformat_minor": 2
|
| 154 |
+
}
|