Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
node_id
int64
0
324
x_t-11_d0
float64
0
85.1
x_t-11_d1
float64
0
1
x_t-10_d0
float64
0
85.1
x_t-10_d1
float64
0
1
x_t-9_d0
float64
0
85.1
x_t-9_d1
float64
0
1
x_t-8_d0
float64
0
85.1
x_t-8_d1
float64
0
1
x_t-7_d0
float64
0
85.1
x_t-7_d1
float64
0
1
x_t-6_d0
float64
0
85.1
x_t-6_d1
float64
0
1
x_t-5_d0
float64
0
85.1
x_t-5_d1
float64
0
1
x_t-4_d0
float64
0
85.1
x_t-4_d1
float64
0
1
x_t-3_d0
float64
0
85.1
x_t-3_d1
float64
0
1
x_t-2_d0
float64
0
85.1
x_t-2_d1
float64
0
1
x_t-1_d0
float64
0
85.1
x_t-1_d1
float64
0
1
x_t+0_d0
float64
0
85.1
x_t+0_d1
float64
0
1
y_t+1_d0
float64
0
85.1
y_t+1_d1
float64
0
1
y_t+2_d0
float64
0
85.1
y_t+2_d1
float64
0
1
y_t+3_d0
float64
0
85.1
y_t+3_d1
float64
0
1
y_t+4_d0
float64
0
85.1
y_t+4_d1
float64
0
1
y_t+5_d0
float64
0
85.1
y_t+5_d1
float64
0
1
y_t+6_d0
float64
0
85.1
y_t+6_d1
float64
0
1
y_t+7_d0
float64
0
85.1
y_t+7_d1
float64
0
1
y_t+8_d0
float64
0
85.1
y_t+8_d1
float64
0
1
y_t+9_d0
float64
0
85.1
y_t+9_d1
float64
0
1
y_t+10_d0
float64
0
85.1
y_t+10_d1
float64
0
1
y_t+11_d0
float64
0
85.1
y_t+11_d1
float64
0
1
y_t+12_d0
float64
0
85.1
y_t+12_d1
float64
0
1
0
71.4
0
71.6
0.003472
71.6
0.006944
71.1
0.010417
71.7
0.013889
71.2
0.017361
71.3
0.020833
70.5
0.024306
71.5
0.027778
70.7
0.03125
71.5
0.034722
70.9
0.038194
71
0.041667
71.3
0.045139
71.6
0.048611
71.5
0.052083
71.7
0.055556
70.9
0.059028
71.3
0.0625
71.2
0.065972
71
0.069444
70.6
0.072917
70.9
0.076389
71.2
0.079861
1
67.8
0
67.5
0.003472
67.6
0.006944
67.5
0.010417
67.8
0.013889
67.4
0.017361
67.6
0.020833
67.6
0.024306
67.5
0.027778
67.4
0.03125
67.5
0.034722
67.4
0.038194
67.2
0.041667
67.9
0.045139
67.6
0.048611
68.1
0.052083
67.7
0.055556
68
0.059028
67.4
0.0625
67.5
0.065972
67.5
0.069444
67.2
0.072917
67.3
0.076389
67.1
0.079861
2
70.5
0
70.6
0.003472
70.2
0.006944
70.3
0.010417
70.2
0.013889
70.3
0.017361
70.1
0.020833
70.6
0.024306
70.5
0.027778
70.5
0.03125
70.7
0.034722
70.5
0.038194
70.3
0.041667
70.1
0.045139
70.3
0.048611
70.2
0.052083
70.3
0.055556
70.3
0.059028
70
0.0625
70.4
0.065972
70.1
0.069444
70.2
0.072917
70.1
0.076389
70
0.079861
3
67.4
0
67.5
0.003472
67.4
0.006944
68
0.010417
68.1
0.013889
67.5
0.017361
67.2
0.020833
68.1
0.024306
67.6
0.027778
68.3
0.03125
67.2
0.034722
67.2
0.038194
66.8
0.041667
67.1
0.045139
67.5
0.048611
66.8
0.052083
67.4
0.055556
67.5
0.059028
67.4
0.0625
67.3
0.065972
67.2
0.069444
67.4
0.072917
67.1
0.076389
68
0.079861
4
68.8
0
68.7
0.003472
68.7
0.006944
68.5
0.010417
68.4
0.013889
68.4
0.017361
68.5
0.020833
68.4
0.024306
68.3
0.027778
68.5
0.03125
68.4
0.034722
68.3
0.038194
68.3
0.041667
68.4
0.045139
68.4
0.048611
68.4
0.052083
68.5
0.055556
68.3
0.059028
68.3
0.0625
68.3
0.065972
68.5
0.069444
68.4
0.072917
68.3
0.076389
68.3
0.079861
5
66.6
0
66.6
0.003472
66.1
0.006944
66.7
0.010417
66.9
0.013889
66.5
0.017361
66.8
0.020833
66.4
0.024306
66.5
0.027778
66.1
0.03125
67.1
0.034722
66
0.038194
66.3
0.041667
65.9
0.045139
66.6
0.048611
67.1
0.052083
66.9
0.055556
65.9
0.059028
66.5
0.0625
67.2
0.065972
66.7
0.069444
66.3
0.072917
66.5
0.076389
66.1
0.079861
6
66.8
0
66.8
0.003472
66.8
0.006944
66.6
0.010417
66.1
0.013889
65.3
0.017361
65.7
0.020833
66.6
0.024306
66.4
0.027778
66.5
0.03125
66
0.034722
67
0.038194
66.7
0.041667
66.7
0.045139
66.7
0.048611
66.4
0.052083
66.8
0.055556
66.7
0.059028
66.4
0.0625
66.6
0.065972
66.6
0.069444
66.8
0.072917
66.2
0.076389
66.1
0.079861
7
68
0
67.8
0.003472
67.8
0.006944
67.7
0.010417
67.7
0.013889
67.8
0.017361
67.8
0.020833
67.8
0.024306
67.8
0.027778
67.8
0.03125
67.7
0.034722
67.7
0.038194
67.7
0.041667
67.7
0.045139
67.7
0.048611
67.6
0.052083
67.7
0.055556
67.6
0.059028
67.7
0.0625
67.6
0.065972
67.6
0.069444
67.5
0.072917
67.6
0.076389
67.6
0.079861
8
66.8
0
66.5
0.003472
66.2
0.006944
65.9
0.010417
66.1
0.013889
66.4
0.017361
66.7
0.020833
66.3
0.024306
66.6
0.027778
66.7
0.03125
66.1
0.034722
66.7
0.038194
65.9
0.041667
66.3
0.045139
66.4
0.048611
66.4
0.052083
66.5
0.055556
65.5
0.059028
66.1
0.0625
66.7
0.065972
66.2
0.069444
65.9
0.072917
66.4
0.076389
65.9
0.079861
9
69
0
68.2
0.003472
67.8
0.006944
67.8
0.010417
67.8
0.013889
68.1
0.017361
68.4
0.020833
68.4
0.024306
68.3
0.027778
68.4
0.03125
68.2
0.034722
68.3
0.038194
68.1
0.041667
67.7
0.045139
68
0.048611
67.9
0.052083
67.8
0.055556
68
0.059028
68.1
0.0625
67.8
0.065972
68
0.069444
67.7
0.072917
67.6
0.076389
68.6
0.079861
10
68.2
0
68
0.003472
67.9
0.006944
67.9
0.010417
67.8
0.013889
67.8
0.017361
67.8
0.020833
67.9
0.024306
67.9
0.027778
67.9
0.03125
67.8
0.034722
67.9
0.038194
67.9
0.041667
67.7
0.045139
67.7
0.048611
67.7
0.052083
67.8
0.055556
67.8
0.059028
67.7
0.0625
67.8
0.065972
67.6
0.069444
67.7
0.072917
67.6
0.076389
67.6
0.079861
11
67.7
0
67.4
0.003472
67.4
0.006944
67.4
0.010417
67.4
0.013889
67.7
0.017361
67.5
0.020833
67.3
0.024306
67.1
0.027778
67
0.03125
67.6
0.034722
67.2
0.038194
67
0.041667
67.5
0.045139
66.9
0.048611
67
0.052083
67.4
0.055556
67.4
0.059028
66.8
0.0625
67.4
0.065972
67.3
0.069444
67.1
0.072917
67.1
0.076389
66.9
0.079861
12
67.7
0
67.5
0.003472
67.6
0.006944
67.5
0.010417
67.6
0.013889
67.6
0.017361
67.5
0.020833
67.5
0.024306
67.4
0.027778
67.5
0.03125
67.3
0.034722
67.5
0.038194
67.5
0.041667
67.4
0.045139
67.3
0.048611
67.4
0.052083
67.4
0.055556
67.4
0.059028
67.8
0.0625
67.6
0.065972
67.6
0.069444
67.5
0.072917
67.7
0.076389
67.6
0.079861
13
68.7
0
69.2
0.003472
68.7
0.006944
68.6
0.010417
68.2
0.013889
68.6
0.017361
68.3
0.020833
68.4
0.024306
68.4
0.027778
69.1
0.03125
69.1
0.034722
68.2
0.038194
68.8
0.041667
69.1
0.045139
68.6
0.048611
68
0.052083
68.4
0.055556
68.4
0.059028
68
0.0625
68
0.065972
68.5
0.069444
68.2
0.072917
68.6
0.076389
68.9
0.079861
14
67.5
0
67.7
0.003472
67.2
0.006944
67.6
0.010417
67.2
0.013889
67.2
0.017361
66.9
0.020833
67.5
0.024306
67.7
0.027778
67.1
0.03125
66.8
0.034722
67.2
0.038194
67.1
0.041667
66.9
0.045139
67
0.048611
67.2
0.052083
67
0.055556
66.4
0.059028
66.7
0.0625
67
0.065972
66.9
0.069444
67.5
0.072917
67.6
0.076389
66.8
0.079861
15
68.4
0
68.1
0.003472
68
0.006944
68.4
0.010417
68.1
0.013889
68.1
0.017361
68.4
0.020833
68
0.024306
68.1
0.027778
68.4
0.03125
68.2
0.034722
67.4
0.038194
67.5
0.041667
67.9
0.045139
68
0.048611
68.3
0.052083
67.4
0.055556
67.5
0.059028
68.1
0.0625
67.5
0.065972
68.2
0.069444
68
0.072917
67.5
0.076389
67.8
0.079861
16
68
0
67.8
0.003472
67.8
0.006944
67.7
0.010417
67.7
0.013889
67.8
0.017361
67.8
0.020833
67.8
0.024306
67.8
0.027778
67.8
0.03125
67.7
0.034722
67.7
0.038194
67.7
0.041667
67.7
0.045139
67.7
0.048611
67.6
0.052083
67.7
0.055556
67.6
0.059028
67.7
0.0625
67.6
0.065972
67.6
0.069444
67.5
0.072917
67.6
0.076389
67.6
0.079861
17
68.1
0
67.9
0.003472
67.5
0.006944
67.5
0.010417
67.7
0.013889
67.2
0.017361
67.2
0.020833
67.3
0.024306
68.4
0.027778
67.3
0.03125
67.2
0.034722
67.2
0.038194
67.7
0.041667
67.4
0.045139
68.1
0.048611
67.9
0.052083
67.2
0.055556
67.8
0.059028
66.5
0.0625
67.3
0.065972
66.8
0.069444
67.7
0.072917
68
0.076389
67.1
0.079861
18
68.8
0
68.4
0.003472
68.4
0.006944
68.4
0.010417
68.4
0.013889
68.3
0.017361
68.3
0.020833
68.3
0.024306
68.3
0.027778
68.3
0.03125
68.4
0.034722
68.4
0.038194
68.4
0.041667
68.3
0.045139
68.2
0.048611
68.3
0.052083
68.2
0.055556
68.4
0.059028
68.3
0.0625
68.3
0.065972
68.1
0.069444
68.2
0.072917
68.3
0.076389
68.3
0.079861
19
68.2
0
68.1
0.003472
68.6
0.006944
68.5
0.010417
68.7
0.013889
68.5
0.017361
68.9
0.020833
68.6
0.024306
68.7
0.027778
69.1
0.03125
69.2
0.034722
69.4
0.038194
68.8
0.041667
69.9
0.045139
68.4
0.048611
69.1
0.052083
69.3
0.055556
68.5
0.059028
68.9
0.0625
68.9
0.065972
69.4
0.069444
68.5
0.072917
69.2
0.076389
69
0.079861
20
67.7
0
67.7
0.003472
67.5
0.006944
67.8
0.010417
67.6
0.013889
67.8
0.017361
68.2
0.020833
68.2
0.024306
67.5
0.027778
67.8
0.03125
67.9
0.034722
67.8
0.038194
67.9
0.041667
68
0.045139
68.1
0.048611
67.5
0.052083
68
0.055556
67.9
0.059028
68.1
0.0625
67.9
0.065972
68.1
0.069444
67.7
0.072917
67.9
0.076389
68
0.079861
21
67.4
0
67.2
0.003472
67
0.006944
66.5
0.010417
66.4
0.013889
66.5
0.017361
66.4
0.020833
67.4
0.024306
67.4
0.027778
67.2
0.03125
67.2
0.034722
67.2
0.038194
67.5
0.041667
67
0.045139
67.1
0.048611
67.2
0.052083
66.6
0.055556
66.6
0.059028
66.7
0.0625
67.7
0.065972
66.7
0.069444
67
0.072917
67.4
0.076389
66.8
0.079861
22
68.7
0
68.8
0.003472
68.4
0.006944
69.1
0.010417
68.9
0.013889
68.8
0.017361
68.9
0.020833
69.3
0.024306
69.1
0.027778
69.3
0.03125
68.6
0.034722
68.2
0.038194
68.6
0.041667
68.6
0.045139
68.8
0.048611
68.9
0.052083
69.1
0.055556
68.7
0.059028
68.9
0.0625
68.8
0.065972
68.6
0.069444
68.8
0.072917
68.1
0.076389
68.8
0.079861
23
66.8
0
66.9
0.003472
66.5
0.006944
66.3
0.010417
66.4
0.013889
66
0.017361
66.4
0.020833
66.2
0.024306
66.7
0.027778
65.9
0.03125
66.3
0.034722
65.9
0.038194
66.8
0.041667
66.3
0.045139
66.3
0.048611
66.3
0.052083
65.8
0.055556
65.6
0.059028
65.4
0.0625
66.1
0.065972
66
0.069444
66
0.072917
66.1
0.076389
66.2
0.079861
24
68.5
0
68.4
0.003472
68
0.006944
68.3
0.010417
68.1
0.013889
68.7
0.017361
68.7
0.020833
68.1
0.024306
68.1
0.027778
68.1
0.03125
68.1
0.034722
68.4
0.038194
68
0.041667
68
0.045139
68
0.048611
68.2
0.052083
67.8
0.055556
68
0.059028
67.9
0.0625
68.1
0.065972
68
0.069444
68.1
0.072917
67.4
0.076389
67.8
0.079861
25
69
0
68.8
0.003472
68.5
0.006944
68.6
0.010417
68.7
0.013889
68.6
0.017361
68.8
0.020833
68.5
0.024306
69
0.027778
68.8
0.03125
69.1
0.034722
68.8
0.038194
68.4
0.041667
67.9
0.045139
68.9
0.048611
68.9
0.052083
68.5
0.055556
68.8
0.059028
68.4
0.0625
68
0.065972
68.8
0.069444
68.8
0.072917
68.3
0.076389
68.2
0.079861
26
68.8
0
68.4
0.003472
68.4
0.006944
68.4
0.010417
68.4
0.013889
68.3
0.017361
68.3
0.020833
68.3
0.024306
68.3
0.027778
68.3
0.03125
68.4
0.034722
68.4
0.038194
68.4
0.041667
68.3
0.045139
68.2
0.048611
68.3
0.052083
68.2
0.055556
68.4
0.059028
68.3
0.0625
68.3
0.065972
68.1
0.069444
68.2
0.072917
68.3
0.076389
68.3
0.079861
27
68.4
0
68.7
0.003472
68.9
0.006944
68.5
0.010417
68.5
0.013889
68.9
0.017361
68.7
0.020833
68
0.024306
68.8
0.027778
68.7
0.03125
69.3
0.034722
67.6
0.038194
68.6
0.041667
68.4
0.045139
68.1
0.048611
68.1
0.052083
67.7
0.055556
68.6
0.059028
68.1
0.0625
68.6
0.065972
68.7
0.069444
69.1
0.072917
68.3
0.076389
68.6
0.079861
28
66.5
0
66.7
0.003472
66.3
0.006944
66.5
0.010417
66.6
0.013889
66.3
0.017361
66.9
0.020833
66.3
0.024306
66.8
0.027778
66.2
0.03125
66
0.034722
66.5
0.038194
66.1
0.041667
66.5
0.045139
66.3
0.048611
66.4
0.052083
66
0.055556
65.6
0.059028
66.2
0.0625
66
0.065972
66.1
0.069444
66.1
0.072917
65.9
0.076389
66.3
0.079861
29
67.6
0
67.2
0.003472
67.7
0.006944
67.7
0.010417
67.2
0.013889
68
0.017361
67.8
0.020833
67.6
0.024306
67.9
0.027778
67.9
0.03125
67.5
0.034722
67.2
0.038194
68
0.041667
68.1
0.045139
67.6
0.048611
67.1
0.052083
67.6
0.055556
67.6
0.059028
68.3
0.0625
67.8
0.065972
67.4
0.069444
68.7
0.072917
67.4
0.076389
66.9
0.079861
30
66.8
0
67.1
0.003472
67.2
0.006944
67
0.010417
67.1
0.013889
67
0.017361
66.9
0.020833
67.7
0.024306
67.6
0.027778
66.7
0.03125
66.5
0.034722
67
0.038194
67.3
0.041667
66.2
0.045139
66.3
0.048611
67.3
0.052083
66.7
0.055556
66.1
0.059028
66.9
0.0625
67.5
0.065972
66.7
0.069444
67
0.072917
67.3
0.076389
66.6
0.079861
31
69.3
0
69
0.003472
69.1
0.006944
69.1
0.010417
69.2
0.013889
69.3
0.017361
69.2
0.020833
68.9
0.024306
69.7
0.027778
69.4
0.03125
69.1
0.034722
69.1
0.038194
68.9
0.041667
69.1
0.045139
69.2
0.048611
69.2
0.052083
69.2
0.055556
69
0.059028
69.2
0.0625
68.9
0.065972
68.7
0.069444
69
0.072917
68.5
0.076389
69.1
0.079861
32
69.3
0
69.4
0.003472
69.4
0.006944
69.3
0.010417
68.4
0.013889
68.6
0.017361
69.2
0.020833
69.4
0.024306
69.1
0.027778
68.8
0.03125
69.3
0.034722
69.3
0.038194
69.1
0.041667
69.2
0.045139
69.3
0.048611
69.9
0.052083
68.8
0.055556
69.3
0.059028
68.7
0.0625
68.4
0.065972
68.4
0.069444
69.3
0.072917
69
0.076389
68.6
0.079861
33
69.5
0
69.2
0.003472
68.7
0.006944
68.4
0.010417
69.1
0.013889
68.6
0.017361
68.5
0.020833
68.8
0.024306
68.8
0.027778
69.2
0.03125
69.1
0.034722
68.6
0.038194
69.2
0.041667
68.3
0.045139
68.7
0.048611
68.6
0.052083
68.8
0.055556
68.8
0.059028
69.5
0.0625
68.2
0.065972
69
0.069444
68.6
0.072917
69.5
0.076389
68.9
0.079861
34
67.9
0
67.3
0.003472
67.4
0.006944
67.3
0.010417
67.7
0.013889
67.9
0.017361
67.9
0.020833
67.7
0.024306
67.4
0.027778
67.8
0.03125
66.9
0.034722
66.9
0.038194
67.7
0.041667
67.1
0.045139
67.9
0.048611
67.1
0.052083
66.8
0.055556
67.1
0.059028
66.5
0.0625
68.1
0.065972
67.1
0.069444
67.2
0.072917
67.1
0.076389
67.8
0.079861
35
67.7
0
67.5
0.003472
67.6
0.006944
67.5
0.010417
67.6
0.013889
67.6
0.017361
67.5
0.020833
67.5
0.024306
67.4
0.027778
67.5
0.03125
67.3
0.034722
67.5
0.038194
67.5
0.041667
67.4
0.045139
67.3
0.048611
67.4
0.052083
67.4
0.055556
67.4
0.059028
67.8
0.0625
67.6
0.065972
67.6
0.069444
67.5
0.072917
67.7
0.076389
67.6
0.079861
36
71.6
0
71.2
0.003472
71.3
0.006944
70.1
0.010417
71.6
0.013889
71.4
0.017361
71.5
0.020833
70.8
0.024306
71.2
0.027778
71.6
0.03125
71.3
0.034722
71.4
0.038194
70.7
0.041667
71.2
0.045139
71.4
0.048611
71.9
0.052083
71.6
0.055556
71.7
0.059028
71.3
0.0625
71.2
0.065972
71.1
0.069444
70.9
0.072917
71.3
0.076389
70.8
0.079861
37
67.9
0
67.2
0.003472
67.4
0.006944
67.4
0.010417
67.6
0.013889
67.1
0.017361
67.1
0.020833
67.1
0.024306
67.4
0.027778
67.2
0.03125
67.1
0.034722
67.7
0.038194
67.3
0.041667
67.7
0.045139
67.5
0.048611
67.8
0.052083
67.6
0.055556
66.9
0.059028
67.4
0.0625
68
0.065972
67.2
0.069444
66.6
0.072917
67.5
0.076389
67.1
0.079861
38
68.9
0
68.4
0.003472
67.9
0.006944
67.7
0.010417
67.9
0.013889
68.2
0.017361
68
0.020833
67.8
0.024306
67.9
0.027778
68
0.03125
68
0.034722
67.7
0.038194
67.8
0.041667
67.4
0.045139
67.5
0.048611
68
0.052083
68.2
0.055556
67.4
0.059028
67.3
0.0625
67.8
0.065972
67.9
0.069444
67.3
0.072917
67.3
0.076389
67.8
0.079861
39
69.6
0
69.1
0.003472
69.8
0.006944
69.4
0.010417
69.4
0.013889
69.2
0.017361
68.6
0.020833
69.3
0.024306
69.5
0.027778
68.7
0.03125
69.2
0.034722
69.7
0.038194
69.9
0.041667
69.7
0.045139
70.2
0.048611
69.3
0.052083
69.6
0.055556
69.6
0.059028
70.1
0.0625
70.3
0.065972
69.2
0.069444
70.1
0.072917
70.1
0.076389
70.3
0.079861
40
68.3
0
67.9
0.003472
68.2
0.006944
67.2
0.010417
67.9
0.013889
68.1
0.017361
68.5
0.020833
67.9
0.024306
68.1
0.027778
68.7
0.03125
68.2
0.034722
68
0.038194
67.7
0.041667
67.8
0.045139
68.4
0.048611
68.6
0.052083
67.7
0.055556
67.8
0.059028
68.2
0.0625
67.6
0.065972
68.2
0.069444
67.8
0.072917
67.7
0.076389
67.3
0.079861
41
68.2
0
68.1
0.003472
68.2
0.006944
68.3
0.010417
68.3
0.013889
68.4
0.017361
68.3
0.020833
68.4
0.024306
68.1
0.027778
68.2
0.03125
68.3
0.034722
68.3
0.038194
68.3
0.041667
68.3
0.045139
67.8
0.048611
67.8
0.052083
68.2
0.055556
67.9
0.059028
67.6
0.0625
67.6
0.065972
68
0.069444
67.8
0.072917
67.6
0.076389
67.5
0.079861
42
67.1
0
66.6
0.003472
66.1
0.006944
65.8
0.010417
66.3
0.013889
66.2
0.017361
66.2
0.020833
66.5
0.024306
66.3
0.027778
66.4
0.03125
66
0.034722
66.1
0.038194
65
0.041667
65.6
0.045139
66.1
0.048611
65.3
0.052083
65.5
0.055556
65.9
0.059028
66.5
0.0625
66.3
0.065972
66
0.069444
65.7
0.072917
66.5
0.076389
66.2
0.079861
43
66.6
0
66.1
0.003472
66.2
0.006944
66.5
0.010417
66.3
0.013889
65.9
0.017361
65.9
0.020833
66.1
0.024306
65.9
0.027778
66.4
0.03125
66.1
0.034722
66
0.038194
66
0.041667
66.5
0.045139
66.5
0.048611
66
0.052083
66.4
0.055556
65.7
0.059028
66
0.0625
65.4
0.065972
65.3
0.069444
65.8
0.072917
66
0.076389
66.6
0.079861
44
66.7
0
66.6
0.003472
66.8
0.006944
67.4
0.010417
67.9
0.013889
67.2
0.017361
67
0.020833
66.9
0.024306
67.1
0.027778
67.1
0.03125
68.1
0.034722
66.1
0.038194
66.4
0.041667
66.7
0.045139
66.7
0.048611
67.1
0.052083
67.6
0.055556
66.5
0.059028
67.3
0.0625
67.9
0.065972
66.2
0.069444
66.5
0.072917
66.5
0.076389
66.5
0.079861
45
67.7
0
68
0.003472
67.7
0.006944
67.9
0.010417
67.9
0.013889
68
0.017361
67.6
0.020833
67.7
0.024306
67.7
0.027778
67.9
0.03125
67
0.034722
67.4
0.038194
67.3
0.041667
66.8
0.045139
67.3
0.048611
67.8
0.052083
67.5
0.055556
67.3
0.059028
66.7
0.0625
67.4
0.065972
67.2
0.069444
67.2
0.072917
67.2
0.076389
67.3
0.079861
46
66.5
0
66.8
0.003472
66.6
0.006944
66.3
0.010417
65.9
0.013889
66.2
0.017361
66.3
0.020833
65.9
0.024306
66.5
0.027778
66.1
0.03125
66.4
0.034722
66.2
0.038194
67
0.041667
66.3
0.045139
66.3
0.048611
65.7
0.052083
65.8
0.055556
65.9
0.059028
66.1
0.0625
66.6
0.065972
66
0.069444
66.9
0.072917
66.2
0.076389
66.5
0.079861
47
69.3
0
69.2
0.003472
69.4
0.006944
69.1
0.010417
68.6
0.013889
69.2
0.017361
69
0.020833
68.8
0.024306
68.9
0.027778
68.9
0.03125
68.6
0.034722
69.2
0.038194
68.8
0.041667
68.4
0.045139
68.3
0.048611
68.7
0.052083
68.6
0.055556
68.8
0.059028
69.2
0.0625
68.6
0.065972
68.3
0.069444
69
0.072917
69
0.076389
69.3
0.079861
48
67.9
0
67.5
0.003472
67.9
0.006944
68.1
0.010417
68.2
0.013889
67.7
0.017361
67.6
0.020833
68.1
0.024306
67.7
0.027778
67.8
0.03125
67.2
0.034722
67.6
0.038194
67.4
0.041667
67.6
0.045139
67.4
0.048611
67.3
0.052083
67.6
0.055556
67.5
0.059028
67
0.0625
67.2
0.065972
67.1
0.069444
67.3
0.072917
66.9
0.076389
67.9
0.079861
49
67.7
0
67
0.003472
66.8
0.006944
66.2
0.010417
65.7
0.013889
66.3
0.017361
66.9
0.020833
66
0.024306
66.6
0.027778
66.1
0.03125
66.7
0.034722
67
0.038194
67
0.041667
67.1
0.045139
67.1
0.048611
66.9
0.052083
66.2
0.055556
66.7
0.059028
66.6
0.0625
66.3
0.065972
66.7
0.069444
66.6
0.072917
66.8
0.076389
66.6
0.079861
50
68
0
67.8
0.003472
67.8
0.006944
67.7
0.010417
67.7
0.013889
67.8
0.017361
67.8
0.020833
67.8
0.024306
67.8
0.027778
67.8
0.03125
67.7
0.034722
67.7
0.038194
67.7
0.041667
67.7
0.045139
67.7
0.048611
67.6
0.052083
67.7
0.055556
67.6
0.059028
67.7
0.0625
67.6
0.065972
67.6
0.069444
67.5
0.072917
67.6
0.076389
67.6
0.079861
51
69
0
69.2
0.003472
69.4
0.006944
69.6
0.010417
68.7
0.013889
69.1
0.017361
69.3
0.020833
69.7
0.024306
69.2
0.027778
70
0.03125
69.4
0.034722
69.9
0.038194
68.7
0.041667
68.8
0.045139
68.7
0.048611
69.3
0.052083
69
0.055556
69.1
0.059028
69
0.0625
69.3
0.065972
69
0.069444
69.2
0.072917
68.8
0.076389
68.9
0.079861
52
68.9
0
68.7
0.003472
68.4
0.006944
68.6
0.010417
68.9
0.013889
68.6
0.017361
68.5
0.020833
68.8
0.024306
68.8
0.027778
68.9
0.03125
68.5
0.034722
68.7
0.038194
67.9
0.041667
69.1
0.045139
68
0.048611
68.3
0.052083
68.5
0.055556
68.3
0.059028
68
0.0625
68.3
0.065972
68.7
0.069444
68.5
0.072917
67.9
0.076389
68.5
0.079861
53
68.6
0
68.1
0.003472
68.3
0.006944
68.1
0.010417
68.2
0.013889
68.2
0.017361
67.9
0.020833
68
0.024306
68.3
0.027778
68
0.03125
67.8
0.034722
68
0.038194
67.8
0.041667
67.9
0.045139
68
0.048611
67.8
0.052083
67.7
0.055556
67.8
0.059028
67.6
0.0625
67.8
0.065972
67.7
0.069444
67.6
0.072917
67.4
0.076389
67.6
0.079861
54
68.6
0
68
0.003472
68.1
0.006944
67.6
0.010417
67.7
0.013889
68.5
0.017361
68.2
0.020833
68.3
0.024306
68.2
0.027778
68.5
0.03125
68.1
0.034722
67.6
0.038194
67.8
0.041667
67.5
0.045139
68
0.048611
68
0.052083
67.8
0.055556
67.9
0.059028
67.7
0.0625
68
0.065972
67.9
0.069444
68
0.072917
67.6
0.076389
67.6
0.079861
55
69.1
0
68.9
0.003472
69.1
0.006944
68.6
0.010417
68.5
0.013889
68.8
0.017361
69
0.020833
68.6
0.024306
68.8
0.027778
69
0.03125
69.3
0.034722
69.4
0.038194
68.8
0.041667
68.5
0.045139
68.6
0.048611
68.5
0.052083
68.7
0.055556
68.9
0.059028
69
0.0625
68.6
0.065972
68.6
0.069444
68.4
0.072917
68.7
0.076389
68.8
0.079861
56
72.1
0
72
0.003472
72.3
0.006944
72
0.010417
72.1
0.013889
71.9
0.017361
72.1
0.020833
71.9
0.024306
71.6
0.027778
72.2
0.03125
72.3
0.034722
72.3
0.038194
72.2
0.041667
71.9
0.045139
72
0.048611
72.2
0.052083
72.1
0.055556
72.1
0.059028
72.2
0.0625
72.1
0.065972
72.2
0.069444
72.2
0.072917
72.5
0.076389
71.9
0.079861
57
68.1
0
67.8
0.003472
67.8
0.006944
67.7
0.010417
67.8
0.013889
67.8
0.017361
67.8
0.020833
67.7
0.024306
67.8
0.027778
67.7
0.03125
67.7
0.034722
67.8
0.038194
67.7
0.041667
67.5
0.045139
67.5
0.048611
67.7
0.052083
67.7
0.055556
67.6
0.059028
67.7
0.0625
67.7
0.065972
67.6
0.069444
67.5
0.072917
67.6
0.076389
67.6
0.079861
58
67.4
0
68.3
0.003472
67.4
0.006944
67.5
0.010417
67.6
0.013889
67.7
0.017361
67.9
0.020833
68
0.024306
67.6
0.027778
67.3
0.03125
67.6
0.034722
67.1
0.038194
67.6
0.041667
67.6
0.045139
67.4
0.048611
67.2
0.052083
67.6
0.055556
67.4
0.059028
68
0.0625
67.9
0.065972
67.2
0.069444
67.6
0.072917
67.5
0.076389
67.2
0.079861
59
68
0
67.4
0.003472
67.7
0.006944
67.7
0.010417
68.1
0.013889
67.6
0.017361
67.7
0.020833
67.5
0.024306
67.4
0.027778
67.1
0.03125
67.1
0.034722
68
0.038194
67.4
0.041667
67.5
0.045139
67.7
0.048611
67.4
0.052083
67.6
0.055556
67.1
0.059028
67.3
0.0625
67.1
0.065972
66.4
0.069444
67.1
0.072917
67.5
0.076389
67
0.079861
60
68.3
0
68.1
0.003472
68.4
0.006944
68.8
0.010417
68.3
0.013889
67.6
0.017361
68.2
0.020833
68
0.024306
67.9
0.027778
68
0.03125
68.1
0.034722
68
0.038194
67.8
0.041667
67.7
0.045139
67.5
0.048611
67.6
0.052083
67.7
0.055556
67
0.059028
67.4
0.0625
67.7
0.065972
67
0.069444
67.6
0.072917
67.4
0.076389
67.6
0.079861
61
70.1
0
68.8
0.003472
68.6
0.006944
68.3
0.010417
68.2
0.013889
68.4
0.017361
68.5
0.020833
68.2
0.024306
68.7
0.027778
68.2
0.03125
67.6
0.034722
68.3
0.038194
67.8
0.041667
68.3
0.045139
68.6
0.048611
68.9
0.052083
69
0.055556
69
0.059028
68.5
0.0625
68.7
0.065972
68.5
0.069444
68.9
0.072917
69.3
0.076389
69.9
0.079861
62
67.9
0
68.1
0.003472
68
0.006944
68.2
0.010417
68.1
0.013889
67.6
0.017361
67.9
0.020833
67.6
0.024306
68
0.027778
67.5
0.03125
67.7
0.034722
67.7
0.038194
68
0.041667
67.9
0.045139
68.6
0.048611
67.8
0.052083
68
0.055556
68
0.059028
68.2
0.0625
68.1
0.065972
68.1
0.069444
67.8
0.072917
68.6
0.076389
68.2
0.079861
63
68.7
0
68.7
0.003472
68.7
0.006944
68.4
0.010417
68.4
0.013889
68.5
0.017361
68.7
0.020833
68
0.024306
67.6
0.027778
67.3
0.03125
68.2
0.034722
68.3
0.038194
67.8
0.041667
67.3
0.045139
67.9
0.048611
67.7
0.052083
66.8
0.055556
67.6
0.059028
67.7
0.0625
67.6
0.065972
67.8
0.069444
67.7
0.072917
67.2
0.076389
67.9
0.079861
64
67.5
0
67.3
0.003472
67.3
0.006944
68.9
0.010417
71.4
0.013889
71.6
0.017361
69.8
0.020833
71.2
0.024306
69.3
0.027778
62.1
0.03125
63.1
0.034722
66.4
0.038194
66
0.041667
68.7
0.045139
62.8
0.048611
62.5
0.052083
66
0.055556
62.9
0.059028
64.6
0.0625
65.3
0.065972
64.3
0.069444
66.2
0.072917
66.1
0.076389
65.2
0.079861
65
68.3
0
68.3
0.003472
68.1
0.006944
67.8
0.010417
67.7
0.013889
67.8
0.017361
67.5
0.020833
67.7
0.024306
68.2
0.027778
68
0.03125
67.7
0.034722
67.9
0.038194
67.3
0.041667
67.5
0.045139
67.7
0.048611
67.7
0.052083
67.6
0.055556
67.3
0.059028
68.1
0.0625
68
0.065972
68.3
0.069444
68.2
0.072917
67.6
0.076389
67.9
0.079861
66
67.7
0
67.7
0.003472
67.4
0.006944
67.5
0.010417
67.7
0.013889
67.9
0.017361
67.7
0.020833
67.6
0.024306
67.8
0.027778
67.5
0.03125
67.5
0.034722
67.7
0.038194
67.5
0.041667
67.6
0.045139
67.6
0.048611
67.5
0.052083
67.8
0.055556
67.4
0.059028
67.6
0.0625
67.4
0.065972
67.5
0.069444
67.3
0.072917
67.4
0.076389
67.4
0.079861
67
68
0
67.8
0.003472
67.8
0.006944
67.7
0.010417
67.7
0.013889
67.8
0.017361
67.8
0.020833
67.8
0.024306
67.8
0.027778
67.8
0.03125
67.7
0.034722
67.7
0.038194
67.7
0.041667
67.7
0.045139
67.7
0.048611
67.6
0.052083
67.7
0.055556
67.6
0.059028
67.7
0.0625
67.6
0.065972
67.6
0.069444
67.5
0.072917
67.6
0.076389
67.6
0.079861
68
68.4
0
68.5
0.003472
68.8
0.006944
68.3
0.010417
68.2
0.013889
68.2
0.017361
68.2
0.020833
67.6
0.024306
68.3
0.027778
67.9
0.03125
68.1
0.034722
67.8
0.038194
68
0.041667
67.8
0.045139
67.8
0.048611
67.8
0.052083
68
0.055556
67.8
0.059028
68
0.0625
68.1
0.065972
68
0.069444
67.8
0.072917
67.7
0.076389
67.8
0.079861
69
67.3
0
67.5
0.003472
67.5
0.006944
67.7
0.010417
68.2
0.013889
67.3
0.017361
67.1
0.020833
67.6
0.024306
67.5
0.027778
67.2
0.03125
66.9
0.034722
67
0.038194
67.4
0.041667
67.4
0.045139
66.7
0.048611
67.3
0.052083
66.8
0.055556
66.2
0.059028
67.1
0.0625
67.1
0.065972
67.7
0.069444
66.7
0.072917
66.9
0.076389
66.4
0.079861
70
67.7
0
67.6
0.003472
67.8
0.006944
67.3
0.010417
68
0.013889
67.4
0.017361
67.3
0.020833
67.5
0.024306
67.2
0.027778
66.9
0.03125
67.2
0.034722
67
0.038194
66.7
0.041667
67.8
0.045139
67.3
0.048611
67.8
0.052083
66.6
0.055556
67.1
0.059028
67.2
0.0625
67.2
0.065972
67.6
0.069444
67.7
0.072917
67.5
0.076389
66.9
0.079861
71
67.3
0
65.4
0.003472
65.5
0.006944
64.3
0.010417
59.9
0.013889
64.6
0.017361
67
0.020833
62.3
0.024306
64.7
0.027778
59.9
0.03125
64.7
0.034722
63.7
0.038194
65
0.041667
66.4
0.045139
62.9
0.048611
65.3
0.052083
65.8
0.055556
66.5
0.059028
67.3
0.0625
67.6
0.065972
68.2
0.069444
67.8
0.072917
66.3
0.076389
66.9
0.079861
72
68.2
0
68.2
0.003472
68.1
0.006944
68.4
0.010417
68.3
0.013889
68.3
0.017361
68.4
0.020833
68.2
0.024306
68.3
0.027778
68.2
0.03125
68.4
0.034722
68.3
0.038194
68.2
0.041667
68.1
0.045139
67.8
0.048611
67.7
0.052083
68
0.055556
67.8
0.059028
67.5
0.0625
67.7
0.065972
67.9
0.069444
67.7
0.072917
67.4
0.076389
67.6
0.079861
73
67.3
0
67.5
0.003472
67.1
0.006944
66.9
0.010417
66.9
0.013889
67
0.017361
67
0.020833
66.9
0.024306
67
0.027778
67
0.03125
67.5
0.034722
66.7
0.038194
67
0.041667
66.7
0.045139
66.7
0.048611
66.3
0.052083
66.5
0.055556
67.2
0.059028
66.9
0.0625
66.4
0.065972
67
0.069444
67.1
0.072917
66.7
0.076389
66.6
0.079861
74
67.7
0
67.5
0.003472
67.6
0.006944
67.5
0.010417
67.6
0.013889
67.6
0.017361
67.5
0.020833
67.5
0.024306
67.4
0.027778
67.5
0.03125
67.3
0.034722
67.5
0.038194
67.5
0.041667
67.4
0.045139
67.3
0.048611
67.4
0.052083
67.4
0.055556
67.4
0.059028
67.8
0.0625
67.6
0.065972
67.6
0.069444
67.5
0.072917
67.7
0.076389
67.6
0.079861
75
68.3
0
68
0.003472
68.2
0.006944
67.7
0.010417
68
0.013889
68
0.017361
68
0.020833
68.2
0.024306
68.3
0.027778
68.3
0.03125
68.3
0.034722
67.8
0.038194
67.3
0.041667
67.9
0.045139
68
0.048611
68.4
0.052083
68.4
0.055556
68.3
0.059028
67.7
0.0625
69
0.065972
68.4
0.069444
67.9
0.072917
68
0.076389
68.3
0.079861
76
71.6
0
68.3
0.003472
69.5
0.006944
72
0.010417
72.1
0.013889
69.6
0.017361
71.2
0.020833
70.2
0.024306
70.4
0.027778
69.6
0.03125
67
0.034722
68.2
0.038194
69.1
0.041667
68
0.045139
70.4
0.048611
70.6
0.052083
70.8
0.055556
71.7
0.059028
69.9
0.0625
70.3
0.065972
70.2
0.069444
70.3
0.072917
69.7
0.076389
69.7
0.079861
77
67.6
0
67.5
0.003472
67.6
0.006944
67.8
0.010417
67.9
0.013889
67.6
0.017361
67.4
0.020833
67.7
0.024306
67.3
0.027778
67
0.03125
67.2
0.034722
66.9
0.038194
67.5
0.041667
67.6
0.045139
67.2
0.048611
67.4
0.052083
66.9
0.055556
67.5
0.059028
67.3
0.0625
67.3
0.065972
67.5
0.069444
67.8
0.072917
67.6
0.076389
67.9
0.079861
78
68.3
0
68.2
0.003472
69.1
0.006944
68.6
0.010417
68.2
0.013889
68.5
0.017361
67.9
0.020833
67.8
0.024306
68.7
0.027778
69
0.03125
68.3
0.034722
69.1
0.038194
68.1
0.041667
67.8
0.045139
67.9
0.048611
68.6
0.052083
67.8
0.055556
68.7
0.059028
68.4
0.0625
68.9
0.065972
68.3
0.069444
68
0.072917
68.1
0.076389
69.2
0.079861
79
70
0
70.1
0.003472
70
0.006944
69.7
0.010417
69.5
0.013889
69.7
0.017361
69.6
0.020833
69.4
0.024306
69.4
0.027778
69.2
0.03125
69.8
0.034722
69.8
0.038194
69.5
0.041667
69.5
0.045139
69.8
0.048611
68.9
0.052083
69.1
0.055556
69.2
0.059028
69.9
0.0625
69.6
0.065972
68.9
0.069444
69.5
0.072917
69.8
0.076389
69.3
0.079861
80
67.9
0
68.2
0.003472
67.9
0.006944
67.6
0.010417
68.3
0.013889
68
0.017361
67.8
0.020833
67.7
0.024306
67.7
0.027778
67.8
0.03125
67.8
0.034722
67.9
0.038194
67.7
0.041667
67.7
0.045139
67.6
0.048611
67.4
0.052083
67.7
0.055556
67.4
0.059028
67.7
0.0625
67.6
0.065972
67.2
0.069444
66.8
0.072917
67.5
0.076389
67
0.079861
81
67.7
0
67.5
0.003472
67.6
0.006944
67.5
0.010417
67.6
0.013889
67.6
0.017361
67.5
0.020833
67.5
0.024306
67.4
0.027778
67.5
0.03125
67.3
0.034722
67.5
0.038194
67.5
0.041667
67.4
0.045139
67.3
0.048611
67.4
0.052083
67.4
0.055556
67.4
0.059028
67.8
0.0625
67.6
0.065972
67.6
0.069444
67.5
0.072917
67.7
0.076389
67.6
0.079861
82
69
0
69.2
0.003472
68.9
0.006944
68.4
0.010417
68.2
0.013889
68.2
0.017361
68.1
0.020833
68.5
0.024306
69
0.027778
68.8
0.03125
68.9
0.034722
68.8
0.038194
67.8
0.041667
67.8
0.045139
68.2
0.048611
68
0.052083
67.8
0.055556
67.9
0.059028
68.2
0.0625
67.8
0.065972
68.7
0.069444
68.2
0.072917
68.2
0.076389
68.4
0.079861
83
67.7
0
67.5
0.003472
67.6
0.006944
67.5
0.010417
67.6
0.013889
67.6
0.017361
67.5
0.020833
67.5
0.024306
67.4
0.027778
67.5
0.03125
67.3
0.034722
67.5
0.038194
67.5
0.041667
67.4
0.045139
67.3
0.048611
67.4
0.052083
67.4
0.055556
67.4
0.059028
67.8
0.0625
67.6
0.065972
67.6
0.069444
67.5
0.072917
67.7
0.076389
67.6
0.079861
84
69.1
0
68.9
0.003472
68.9
0.006944
69.2
0.010417
68.8
0.013889
69.1
0.017361
69.3
0.020833
69.5
0.024306
69.5
0.027778
69.3
0.03125
69.2
0.034722
68.9
0.038194
68.8
0.041667
68.6
0.045139
69.1
0.048611
68.4
0.052083
69.1
0.055556
68.5
0.059028
68.8
0.0625
69.2
0.065972
68.7
0.069444
68.5
0.072917
69.2
0.076389
69.1
0.079861
85
67.9
0
67.3
0.003472
66.5
0.006944
67.4
0.010417
67.9
0.013889
66.9
0.017361
67
0.020833
67.2
0.024306
67.7
0.027778
67.5
0.03125
67.1
0.034722
67.5
0.038194
66.5
0.041667
67.4
0.045139
67.1
0.048611
67.3
0.052083
66.7
0.055556
66.5
0.059028
66.2
0.0625
66.8
0.065972
66.7
0.069444
67.3
0.072917
67.5
0.076389
66.5
0.079861
86
67.8
0
67.6
0.003472
67.7
0.006944
67.5
0.010417
67.6
0.013889
67.7
0.017361
67.6
0.020833
67.6
0.024306
67.6
0.027778
67.6
0.03125
67.4
0.034722
67.6
0.038194
67.4
0.041667
67.7
0.045139
67.6
0.048611
67.6
0.052083
67.6
0.055556
67.6
0.059028
67.5
0.0625
67.6
0.065972
67.6
0.069444
67.5
0.072917
67.4
0.076389
67.6
0.079861
87
67.8
0
67.1
0.003472
67.3
0.006944
67.5
0.010417
67.7
0.013889
67.3
0.017361
67.5
0.020833
67.4
0.024306
67
0.027778
66.9
0.03125
67.1
0.034722
67.6
0.038194
67.4
0.041667
67.6
0.045139
67.7
0.048611
67.2
0.052083
67.2
0.055556
67
0.059028
66.9
0.0625
66.6
0.065972
66.7
0.069444
67
0.072917
67.5
0.076389
67.2
0.079861
88
67.7
0
67.5
0.003472
67.6
0.006944
67.5
0.010417
67.6
0.013889
67.6
0.017361
67.5
0.020833
67.5
0.024306
67.4
0.027778
67.5
0.03125
67.3
0.034722
67.5
0.038194
67.5
0.041667
67.4
0.045139
67.3
0.048611
67.4
0.052083
67.4
0.055556
67.4
0.059028
67.8
0.0625
67.6
0.065972
67.6
0.069444
67.5
0.072917
67.7
0.076389
67.6
0.079861
89
67.8
0
67.4
0.003472
67.7
0.006944
66.9
0.010417
67.6
0.013889
68.2
0.017361
68.3
0.020833
67.6
0.024306
67.2
0.027778
67
0.03125
67.2
0.034722
67.4
0.038194
67.5
0.041667
66.9
0.045139
67.7
0.048611
67
0.052083
67.5
0.055556
67.5
0.059028
67.6
0.0625
67.8
0.065972
67.6
0.069444
66.6
0.072917
67
0.076389
66.9
0.079861
90
68
0
68.4
0.003472
67.1
0.006944
67.2
0.010417
66.9
0.013889
66.9
0.017361
67
0.020833
67.6
0.024306
67.4
0.027778
67.1
0.03125
66.4
0.034722
67
0.038194
67.1
0.041667
68
0.045139
67.3
0.048611
67.1
0.052083
66.6
0.055556
66.2
0.059028
66.7
0.0625
66.8
0.065972
66.9
0.069444
67.1
0.072917
67.2
0.076389
67
0.079861
91
69
0
69.1
0.003472
68.9
0.006944
68.8
0.010417
69.2
0.013889
69.1
0.017361
68.7
0.020833
68.7
0.024306
68.9
0.027778
68.8
0.03125
69.3
0.034722
68.9
0.038194
68.4
0.041667
69
0.045139
68.5
0.048611
68.7
0.052083
68.9
0.055556
68.6
0.059028
69.1
0.0625
69.1
0.065972
68.6
0.069444
68.5
0.072917
68.4
0.076389
68.6
0.079861
92
69.3
0
68.4
0.003472
68.7
0.006944
68.9
0.010417
68.9
0.013889
69.3
0.017361
69
0.020833
69
0.024306
68.8
0.027778
69.2
0.03125
68.9
0.034722
68.8
0.038194
68.7
0.041667
68.6
0.045139
68.8
0.048611
68.5
0.052083
69.5
0.055556
68.8
0.059028
69.5
0.0625
69.6
0.065972
67.6
0.069444
68.3
0.072917
68.8
0.076389
68.8
0.079861
93
67.8
0
67.8
0.003472
67.8
0.006944
67.4
0.010417
67.9
0.013889
67.8
0.017361
67.2
0.020833
67.9
0.024306
67.4
0.027778
68
0.03125
67.2
0.034722
67.3
0.038194
66.9
0.041667
66.7
0.045139
67
0.048611
67.5
0.052083
67.6
0.055556
67.5
0.059028
66.4
0.0625
66.9
0.065972
66.8
0.069444
67.3
0.072917
67.2
0.076389
67.3
0.079861
94
68.6
0
68.4
0.003472
68.8
0.006944
68.8
0.010417
69.1
0.013889
68.2
0.017361
68.1
0.020833
68.7
0.024306
69
0.027778
68.2
0.03125
67.7
0.034722
68.6
0.038194
68.7
0.041667
68.3
0.045139
67.8
0.048611
68.6
0.052083
68.3
0.055556
68
0.059028
68.2
0.0625
69.2
0.065972
68.9
0.069444
68.3
0.072917
68.1
0.076389
68.3
0.079861
95
67.4
0
66.8
0.003472
67.1
0.006944
67.4
0.010417
66.9
0.013889
67.1
0.017361
67.4
0.020833
67.2
0.024306
67.4
0.027778
67.7
0.03125
67.1
0.034722
67.7
0.038194
67.4
0.041667
67.2
0.045139
66.7
0.048611
67.3
0.052083
66.9
0.055556
67.5
0.059028
67.1
0.0625
67.3
0.065972
67.2
0.069444
67
0.072917
67.4
0.076389
67.6
0.079861
96
67
0
67
0.003472
66.4
0.006944
66.6
0.010417
67
0.013889
66.5
0.017361
66.4
0.020833
66.5
0.024306
66.9
0.027778
67
0.03125
66.5
0.034722
66.2
0.038194
66.7
0.041667
67.2
0.045139
66
0.048611
66.2
0.052083
66.4
0.055556
66.9
0.059028
66.3
0.0625
66.1
0.065972
66.7
0.069444
66.6
0.072917
66.1
0.076389
66.2
0.079861
97
68.8
0
68.7
0.003472
68.7
0.006944
68.5
0.010417
68.4
0.013889
68.4
0.017361
68.5
0.020833
68.4
0.024306
68.3
0.027778
68.5
0.03125
68.4
0.034722
68.3
0.038194
68.3
0.041667
68.4
0.045139
68.4
0.048611
68.4
0.052083
68.5
0.055556
68.3
0.059028
68.3
0.0625
68.3
0.065972
68.5
0.069444
68.4
0.072917
68.3
0.076389
68.3
0.079861
98
65.9
0
65.7
0.003472
65.9
0.006944
66.4
0.010417
66.8
0.013889
65.7
0.017361
65.2
0.020833
66
0.024306
66.3
0.027778
65.2
0.03125
65.1
0.034722
65.8
0.038194
65.5
0.041667
66.1
0.045139
65.2
0.048611
65.2
0.052083
65.9
0.055556
65.9
0.059028
65.5
0.0625
65.6
0.065972
65.4
0.069444
65.2
0.072917
65.8
0.076389
65.1
0.079861
99
70.5
0
70.2
0.003472
70.6
0.006944
69.8
0.010417
70.5
0.013889
70
0.017361
70.4
0.020833
70.2
0.024306
70.6
0.027778
70.2
0.03125
71.3
0.034722
70.4
0.038194
70.7
0.041667
70.4
0.045139
70.6
0.048611
70.6
0.052083
70.4
0.055556
70.3
0.059028
70.7
0.0625
70.9
0.065972
70.8
0.069444
70.4
0.072917
70.1
0.076389
71.1
0.079861
End of preview. Expand in Data Studio

PEMS-BAY Traffic Dataset

Dataset Description

This dataset contains traffic flow data for time series forecasting tasks, commonly used with Graph Neural Networks and specifically the Diffusion Convolutional Recurrent Neural Network (DCRNN) model.

Dataset Structure

Data Format

  • Format: Parquet files for efficient loading and analysis
  • Splits: train (70%), validation (10%), test (20%) - temporal splits preserving chronological order
  • Features: Time series traffic flow data with temporal and spatial dimensions

Split Strategy

  • Temporal splitting: Data is split chronologically to prevent data leakage
  • All sensors included: Each split contains data for all sensors at each time step
  • Training period: Earliest 70% of time samples across all sensors
  • Validation period: Next 10% of time samples across all sensors
  • Test period: Latest 20% of time samples across all sensors
  • Graph structure preserved: Spatial relationships maintained in all splits

Data Schema

  • node_id: Sensor/node identifier (0-206 for METR-LA, 0-324 for PEMS-BAY)
  • x_t*_d*: Input features at different time offsets and dimensions
    • x_t-11_d0 to x_t+0_d0: Traffic flow values at 12 historical time steps
    • x_t-11_d1 to x_t+0_d1: Time-of-day features (normalized 0-1)
  • y_t*_d*: Target values at future time steps and dimensions
    • y_t+1_d0 to y_t+12_d0: Traffic flow predictions for next 12 time steps
    • y_t+1_d1 to y_t+12_d1: Time-of-day features for prediction horizon

Dataset Statistics

  • Total time series samples: ~34K (METR-LA) / ~52K (PEMS-BAY)
  • Total records: ~7M (METR-LA) / ~17M (PEMS-BAY)
  • Records per sample: 207 (METR-LA) / 325 (PEMS-BAY) sensors
  • Temporal resolution: 5-minute intervals
  • Prediction horizon: 1 hour (12 time steps)

Usage

from datasets import Dataset, DatasetDict
import pandas as pd

# Load from local parquet files
train_df = pd.read_parquet("PEMS-BAY/train.parquet")
val_df = pd.read_parquet("PEMS-BAY/val.parquet")
test_df = pd.read_parquet("PEMS-BAY/test.parquet")

ds = DatasetDict({
    "train": Dataset.from_pandas(train_df, preserve_index=False),
    "val": Dataset.from_pandas(val_df, preserve_index=False),
    "test": Dataset.from_pandas(test_df, preserve_index=False)
})

print(f"Train records: {len(ds['train']):,}")
print(f"Val records: {len(ds['val']):,}")
print(f"Test records: {len(ds['test']):,}")

Citation

If you use this dataset, please cite the original DCRNN paper:

@inproceedings{li2018dcrnn_traffic,
  title={{Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting}},
  author={{Li, Yaguang and Yu, Rose and Shahabi, Cyrus and Liu, Yan}},
  booktitle={{International Conference on Learning Representations}},
  year={{2018}}
}

Dataset Generation

The code used to generate this Hugging Face-compatible dataset can be found at witgaw/DCRNN, a fork of the original DCRNN repository with enhanced data processing capabilities.

Original Data Source

This dataset is derived from the original PEMS-BAY dataset used in the DCRNN paper.

License

MIT License - See the original repository LICENSE for details.

Downloads last month
32