--- license: mit configs: - config_name: meeting-qa data_files: - split: train path: meeting/train.jsonl - split: validation path: meeting/dev.jsonl - split: test path: meeting/test.jsonl - config_name: story-qa data_files: - split: train path: story/train.jsonl - split: validation path: story/dev.jsonl - split: test path: story/test.jsonl - config_name: meeting-corpus data_files: - split: corpus path: meeting/corpus.jsonl - config_name: story-corpus data_files: - split: corpus path: story/corpus.jsonl --- # MSRS: Evaluating Multi-Source Retrieval-Augmented Generation **[📄 Paper](https://arxiv.org/abs/2508.20867) | [💻 Code](https://github.com/yale-nlp/MSRS)** This paper introduces a scalable framework for constructing evaluation benchmarks that challenge RAG systems to integrate information across distinct sources and generate long-form responses. Using our framework, we build two new benchmarks on Multi-Source Retrieval and Synthesis: MSRS-Story and MSRS-Meet. ## 🚀 Quickstart Load the corpora for MSRS-Story and MSRS-Meet: ```py from datasets import load_dataset story_corpus = load_dataset("yale-nlp/MSRS", "story-corpus", split="corpus") meeting_corpus = load_dataset("yale-nlp/MSRS", "meeting-corpus", split="corpus") ``` Corpus Dataset Example: ```js { "id": // Unique ID for the document "text": // Document text } ``` Load the query-answer pairs for MSRS-Story and MSRS-Meet (available splits: `train`, `test`, and `validation`): ```py from datasets import load_dataset story_qa = load_dataset("yale-nlp/MSRS", "story-qa") meeting_qa = load_dataset("yale-nlp/MSRS", "meeting-qa") ``` QA Dataset Example: ```js { "id": // Unique ID for the query "query": // Query text "gold_documents": // List of gold document IDs "answer": // List of answer summaries } ```