kadirnar commited on
Commit
fe4d52b
·
1 Parent(s): b32ad52

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -1
README.md CHANGED
@@ -1,3 +1,64 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: gpl-3.0
3
+ inference: false
4
+ tags:
5
+ - object-detection
6
+ - computer-vision
7
+ - vision
8
+ - yolo
9
+ - yolov5
10
  ---
11
+
12
+ ### How to use
13
+
14
+ - Install yolov5:
15
+
16
+ ```bash
17
+ pip install -U yolov5
18
+ ```
19
+
20
+ - Load model and perform prediction:
21
+
22
+ ```python
23
+ import yolov5
24
+
25
+ # load model
26
+ model = yolov5.load('kadirnar/deprem_model_v1')
27
+
28
+ # set model parameters
29
+ model.conf = 0.25 # NMS confidence threshold
30
+ model.iou = 0.45 # NMS IoU threshold
31
+ model.agnostic = False # NMS class-agnostic
32
+ model.multi_label = False # NMS multiple labels per box
33
+ model.max_det = 1000 # maximum number of detections per image
34
+
35
+ # set image
36
+ img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
37
+
38
+ # perform inference
39
+ results = model(img)
40
+
41
+ # inference with larger input size
42
+ results = model(img, size=640)
43
+
44
+ # inference with test time augmentation
45
+ results = model(img, augment=True)
46
+
47
+ # parse results
48
+ predictions = results.pred[0]
49
+ boxes = predictions[:, :4] # x1, y1, x2, y2
50
+ scores = predictions[:, 4]
51
+ categories = predictions[:, 5]
52
+
53
+ # show detection bounding boxes on image
54
+ results.show()
55
+
56
+ # save results into "results/" folder
57
+ results.save(save_dir='results/')
58
+ ```
59
+
60
+ - Finetune the model on your custom dataset:
61
+
62
+ ```bash
63
+ yolov5 train --img 640 --batch 16 --weights kadirnar/deprem_model_v1 --epochs 10 --device cuda:0
64
+ ```