```python import torch from faster_whisper import WhisperModel from datasets import load_dataset # define our torch configuration device = "cuda" if torch.cuda.is_available() else "cpu" compute_type = "float16" if torch.cuda.is_available() else "float32" # load model on GPU if available, else cpu model = WhisperModel("distil-whisper/distil-large-v3.5-ct2", device=device, compute_type=compute_type) # load toy dataset for example dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") sample = dataset[1]["audio"]["path"] segments, info = model.transcribe(sample, beam_size=5, language="en") for segment in segments: print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text)) ```