Commit
·
3189e16
0
Parent(s):
add files
Browse files- .gitattributes +35 -0
- .gitignore +1 -0
- README.md +13 -0
- __init__.py +0 -0
- config.json +39 -0
- configuration_sam_hq.py +4 -0
- convert_sam_hq_to_hf.py +166 -0
- model.safetensors +3 -0
- modeling_sam_hq.py +1542 -0
- preprocessor_config.json +35 -0
.gitattributes
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
**__pycache__**
|
README.md
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
pipeline_tag: mask-generation
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# SAM-HQ: Segment Anything in High Quality (ViT Large)
|
| 7 |
+
|
| 8 |
+
Directly converted weights from [https://github.com/SysCV/sam-hq/tree/main](https://github.com/SysCV/sam-hq/tree/main) to huggingface format.
|
| 9 |
+
*This work does not belong to me. Please checkout the authors' github for more information and updates.*
|
| 10 |
+
|
| 11 |
+
> [**Segment Anything in High Quality**](https://arxiv.org/abs/2306.01567)
|
| 12 |
+
> NeurIPS 2023
|
| 13 |
+
> ETH Zurich & HKUST
|
__init__.py
ADDED
|
File without changes
|
config.json
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "ductai199x/sam_hq_vit_large",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"SamHQModel"
|
| 5 |
+
],
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "configuration_sam_hq.SamHQConfig",
|
| 8 |
+
"AutoModel": "modeling_sam_hq.SamHQModel",
|
| 9 |
+
"AutoModelForMaskGeneration": "modeling_sam_hq.SamHQModel"
|
| 10 |
+
},
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"mask_decoder_config": {
|
| 13 |
+
"model_type": "",
|
| 14 |
+
"vision_encoder_dim": 1024
|
| 15 |
+
},
|
| 16 |
+
"model_type": "sam_hq",
|
| 17 |
+
"prompt_encoder_config": {
|
| 18 |
+
"model_type": ""
|
| 19 |
+
},
|
| 20 |
+
"torch_dtype": "float32",
|
| 21 |
+
"transformers_version": "4.41.2",
|
| 22 |
+
"vision_config": {
|
| 23 |
+
"dropout": 0.0,
|
| 24 |
+
"global_attn_indexes": [
|
| 25 |
+
5,
|
| 26 |
+
11,
|
| 27 |
+
17,
|
| 28 |
+
23
|
| 29 |
+
],
|
| 30 |
+
"hidden_size": 1024,
|
| 31 |
+
"initializer_factor": 1.0,
|
| 32 |
+
"intermediate_size": 6144,
|
| 33 |
+
"mlp_dim": 4096,
|
| 34 |
+
"model_type": "",
|
| 35 |
+
"num_attention_heads": 16,
|
| 36 |
+
"num_hidden_layers": 24,
|
| 37 |
+
"projection_dim": 512
|
| 38 |
+
}
|
| 39 |
+
}
|
configuration_sam_hq.py
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers.models.sam.configuration_sam import SamConfig
|
| 2 |
+
|
| 3 |
+
class SamHQConfig(SamConfig):
|
| 4 |
+
model_type = "sam_hq"
|
convert_sam_hq_to_hf.py
ADDED
|
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""
|
| 16 |
+
Convert SAM checkpoints from the original repository.
|
| 17 |
+
|
| 18 |
+
URL: https://github.com/facebookresearch/segment-anything.
|
| 19 |
+
|
| 20 |
+
Also supports converting the SlimSAM checkpoints from https://github.com/czg1225/SlimSAM/tree/master.
|
| 21 |
+
"""
|
| 22 |
+
import sys
|
| 23 |
+
sys.path.append("../")
|
| 24 |
+
|
| 25 |
+
import argparse
|
| 26 |
+
import re
|
| 27 |
+
import torch
|
| 28 |
+
from safetensors.torch import save_model
|
| 29 |
+
from huggingface_hub import hf_hub_download
|
| 30 |
+
from transformers import SamVisionConfig
|
| 31 |
+
from sam_hq_vit_huge.modeling_sam_hq import SamHQModel
|
| 32 |
+
from sam_hq_vit_huge.configuration_sam_hq import SamHQConfig
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def get_config(model_name):
|
| 36 |
+
if "sam_hq_vit_b" in model_name:
|
| 37 |
+
vision_config = SamVisionConfig()
|
| 38 |
+
elif "sam_hq_vit_l" in model_name:
|
| 39 |
+
vision_config = SamVisionConfig(
|
| 40 |
+
hidden_size=1024,
|
| 41 |
+
num_hidden_layers=24,
|
| 42 |
+
num_attention_heads=16,
|
| 43 |
+
global_attn_indexes=[5, 11, 17, 23],
|
| 44 |
+
)
|
| 45 |
+
elif "sam_hq_vit_h" in model_name:
|
| 46 |
+
vision_config = SamVisionConfig(
|
| 47 |
+
hidden_size=1280,
|
| 48 |
+
num_hidden_layers=32,
|
| 49 |
+
num_attention_heads=16,
|
| 50 |
+
global_attn_indexes=[7, 15, 23, 31],
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
config = SamHQConfig(
|
| 54 |
+
vision_config=vision_config,
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
return config
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
KEYS_TO_MODIFY_MAPPING = {
|
| 61 |
+
# Vision Encoder
|
| 62 |
+
"image_encoder": "vision_encoder",
|
| 63 |
+
"patch_embed.proj": "patch_embed.projection",
|
| 64 |
+
"blocks.": "layers.",
|
| 65 |
+
"neck.0": "neck.conv1",
|
| 66 |
+
"neck.1": "neck.layer_norm1",
|
| 67 |
+
"neck.2": "neck.conv2",
|
| 68 |
+
"neck.3": "neck.layer_norm2",
|
| 69 |
+
|
| 70 |
+
# Prompt Encoder
|
| 71 |
+
"mask_downscaling.0": "mask_embed.conv1",
|
| 72 |
+
"mask_downscaling.1": "mask_embed.layer_norm1",
|
| 73 |
+
"mask_downscaling.3": "mask_embed.conv2",
|
| 74 |
+
"mask_downscaling.4": "mask_embed.layer_norm2",
|
| 75 |
+
"mask_downscaling.6": "mask_embed.conv3",
|
| 76 |
+
"point_embeddings": "point_embed",
|
| 77 |
+
"pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding",
|
| 78 |
+
|
| 79 |
+
# Mask Decoder
|
| 80 |
+
"iou_prediction_head.layers.0": "iou_prediction_head.proj_in",
|
| 81 |
+
"iou_prediction_head.layers.1": "iou_prediction_head.layers.0",
|
| 82 |
+
"iou_prediction_head.layers.2": "iou_prediction_head.proj_out",
|
| 83 |
+
"mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1",
|
| 84 |
+
"mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm",
|
| 85 |
+
"mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2",
|
| 86 |
+
".norm": ".layer_norm",
|
| 87 |
+
|
| 88 |
+
# SAM HQ Extra (in Mask Decoder)
|
| 89 |
+
"hf_mlp.layers.0": "hf_mlp.proj_in",
|
| 90 |
+
"hf_mlp.layers.1": "hf_mlp.layers.0",
|
| 91 |
+
"hf_mlp.layers.2": "hf_mlp.proj_out",
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def replace_keys(state_dict):
|
| 96 |
+
model_state_dict = {}
|
| 97 |
+
state_dict.pop("pixel_mean", None)
|
| 98 |
+
state_dict.pop("pixel_std", None)
|
| 99 |
+
|
| 100 |
+
output_hypernetworks_mlps_pattern = r".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*"
|
| 101 |
+
|
| 102 |
+
for key, value in state_dict.items():
|
| 103 |
+
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
|
| 104 |
+
if key_to_modify in key:
|
| 105 |
+
key = key.replace(key_to_modify, new_key)
|
| 106 |
+
|
| 107 |
+
if re.match(output_hypernetworks_mlps_pattern, key):
|
| 108 |
+
layer_nb = int(re.match(output_hypernetworks_mlps_pattern, key).group(2))
|
| 109 |
+
if layer_nb == 0:
|
| 110 |
+
key = key.replace("layers.0", "proj_in")
|
| 111 |
+
elif layer_nb == 1:
|
| 112 |
+
key = key.replace("layers.1", "layers.0")
|
| 113 |
+
elif layer_nb == 2:
|
| 114 |
+
key = key.replace("layers.2", "proj_out")
|
| 115 |
+
break
|
| 116 |
+
|
| 117 |
+
model_state_dict[key] = value.cpu()
|
| 118 |
+
|
| 119 |
+
model_state_dict["shared_image_embedding.positional_embedding"] = model_state_dict[
|
| 120 |
+
"prompt_encoder.shared_embedding.positional_embedding"
|
| 121 |
+
].cpu().clone()
|
| 122 |
+
|
| 123 |
+
return model_state_dict
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def convert_sam_checkpoint(model_name, checkpoint_path, output_dir):
|
| 127 |
+
config = get_config(model_name)
|
| 128 |
+
|
| 129 |
+
state_dict = torch.load(checkpoint_path, map_location="cpu")
|
| 130 |
+
state_dict = replace_keys(state_dict)
|
| 131 |
+
|
| 132 |
+
hf_model = SamHQModel(config)
|
| 133 |
+
hf_model.eval()
|
| 134 |
+
|
| 135 |
+
hf_model.load_state_dict(state_dict)
|
| 136 |
+
|
| 137 |
+
if output_dir is not None:
|
| 138 |
+
save_model(hf_model, f"{output_dir}/{model_name}.safetensors", metadata={"format": "pt"})
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
if __name__ == "__main__":
|
| 142 |
+
parser = argparse.ArgumentParser()
|
| 143 |
+
choices = ["sam_hq_vit_b", "sam_hq_vit_l", "sam_hq_vit_h"]
|
| 144 |
+
parser.add_argument(
|
| 145 |
+
"--model_name",
|
| 146 |
+
default="sam_hq_vit_h",
|
| 147 |
+
choices=choices,
|
| 148 |
+
type=str,
|
| 149 |
+
help="Name of the original model to convert",
|
| 150 |
+
)
|
| 151 |
+
parser.add_argument(
|
| 152 |
+
"--checkpoint_path",
|
| 153 |
+
type=str,
|
| 154 |
+
required=False,
|
| 155 |
+
help="Path to the original checkpoint",
|
| 156 |
+
)
|
| 157 |
+
parser.add_argument("--output_dir", default=".", type=str, help="Path to the output PyTorch model.")
|
| 158 |
+
|
| 159 |
+
args = parser.parse_args()
|
| 160 |
+
|
| 161 |
+
if args.checkpoint_path is not None:
|
| 162 |
+
checkpoint_path = args.checkpoint_path
|
| 163 |
+
else:
|
| 164 |
+
checkpoint_path = hf_hub_download("lkeab/hq-sam", f"{args.model_name}.pth")
|
| 165 |
+
|
| 166 |
+
convert_sam_checkpoint(args.model_name, checkpoint_path, args.output_dir)
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:70b7ab1648750738311bcf7d1ebed61970e177a3aa9da92fb049063e523da725
|
| 3 |
+
size 1254763816
|
modeling_sam_hq.py
ADDED
|
@@ -0,0 +1,1542 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2023 The Meta AI Authors and The HuggingFace Team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
""" PyTorch SAM model."""
|
| 16 |
+
|
| 17 |
+
import collections
|
| 18 |
+
import math
|
| 19 |
+
from dataclasses import dataclass
|
| 20 |
+
from typing import Dict, List, Optional, Tuple, Union
|
| 21 |
+
|
| 22 |
+
import numpy as np
|
| 23 |
+
import torch
|
| 24 |
+
import torch.nn.functional as F
|
| 25 |
+
import torch.utils.checkpoint
|
| 26 |
+
from torch import Tensor, nn
|
| 27 |
+
|
| 28 |
+
from transformers.activations import ACT2FN
|
| 29 |
+
from transformers.modeling_outputs import BaseModelOutput
|
| 30 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 31 |
+
from transformers.utils import (
|
| 32 |
+
ModelOutput,
|
| 33 |
+
add_start_docstrings,
|
| 34 |
+
add_start_docstrings_to_model_forward,
|
| 35 |
+
logging,
|
| 36 |
+
)
|
| 37 |
+
from transformers.models.sam.configuration_sam import SamMaskDecoderConfig, SamPromptEncoderConfig, SamVisionConfig
|
| 38 |
+
from .configuration_sam_hq import SamHQConfig
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
logger = logging.get_logger(__name__)
|
| 42 |
+
|
| 43 |
+
_CONFIG_FOR_DOC = "SamConfig"
|
| 44 |
+
_CHECKPOINT_FOR_DOC = "facebook/sam-vit-huge"
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
@dataclass
|
| 48 |
+
class SamVisionEncoderOutput(ModelOutput):
|
| 49 |
+
"""
|
| 50 |
+
Base class for sam vision model's outputs that also contains image embeddings obtained by applying the projection
|
| 51 |
+
layer to the pooler_output.
|
| 52 |
+
|
| 53 |
+
Args:
|
| 54 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
| 55 |
+
The image embeddings obtained by applying the projection layer to the pooler_output.
|
| 56 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 57 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
| 58 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 59 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
| 60 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
| 61 |
+
|
| 62 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
| 63 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 64 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 65 |
+
sequence_length)`.
|
| 66 |
+
|
| 67 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 68 |
+
heads.
|
| 69 |
+
"""
|
| 70 |
+
|
| 71 |
+
image_embeds: Optional[torch.FloatTensor] = None
|
| 72 |
+
last_hidden_state: torch.FloatTensor = None
|
| 73 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 74 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
@dataclass
|
| 78 |
+
class SamImageSegmentationOutput(ModelOutput):
|
| 79 |
+
"""
|
| 80 |
+
Base class for Segment-Anything model's output
|
| 81 |
+
|
| 82 |
+
Args:
|
| 83 |
+
iou_scores (`torch.FloatTensor` of shape `(batch_size, num_masks)`):
|
| 84 |
+
The iou scores of the predicted masks.
|
| 85 |
+
pred_masks (`torch.FloatTensor` of shape `(batch_size, num_masks, height, width)`):
|
| 86 |
+
The predicted low resolutions masks. Needs to be post-processed by the processor
|
| 87 |
+
vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 88 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
| 89 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
| 90 |
+
|
| 91 |
+
Hidden-states of the vision model at the output of each layer plus the optional initial embedding outputs.
|
| 92 |
+
vision_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 93 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 94 |
+
sequence_length)`.
|
| 95 |
+
|
| 96 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 97 |
+
heads.
|
| 98 |
+
mask_decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 99 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 100 |
+
sequence_length)`.
|
| 101 |
+
|
| 102 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 103 |
+
heads.
|
| 104 |
+
"""
|
| 105 |
+
|
| 106 |
+
iou_scores: torch.FloatTensor = None
|
| 107 |
+
pred_masks: torch.FloatTensor = None
|
| 108 |
+
vision_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 109 |
+
vision_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 110 |
+
mask_decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
class SamPatchEmbeddings(nn.Module):
|
| 114 |
+
"""
|
| 115 |
+
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
|
| 116 |
+
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
|
| 117 |
+
Transformer.
|
| 118 |
+
"""
|
| 119 |
+
|
| 120 |
+
def __init__(self, config):
|
| 121 |
+
super().__init__()
|
| 122 |
+
image_size, patch_size = config.image_size, config.patch_size
|
| 123 |
+
num_channels, hidden_size = config.num_channels, config.hidden_size
|
| 124 |
+
image_size = (
|
| 125 |
+
image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
|
| 126 |
+
)
|
| 127 |
+
patch_size = (
|
| 128 |
+
patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
|
| 129 |
+
)
|
| 130 |
+
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
| 131 |
+
self.image_size = image_size
|
| 132 |
+
self.patch_size = patch_size
|
| 133 |
+
self.num_channels = num_channels
|
| 134 |
+
self.num_patches = num_patches
|
| 135 |
+
|
| 136 |
+
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
|
| 137 |
+
|
| 138 |
+
def forward(self, pixel_values):
|
| 139 |
+
batch_size, num_channels, height, width = pixel_values.shape
|
| 140 |
+
if num_channels != self.num_channels:
|
| 141 |
+
raise ValueError(
|
| 142 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
| 143 |
+
)
|
| 144 |
+
if height != self.image_size[0] or width != self.image_size[1]:
|
| 145 |
+
raise ValueError(
|
| 146 |
+
f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
|
| 147 |
+
)
|
| 148 |
+
embeddings = self.projection(pixel_values).permute(0, 2, 3, 1)
|
| 149 |
+
return embeddings
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
class SamMLPBlock(nn.Module):
|
| 153 |
+
def __init__(self, config):
|
| 154 |
+
super().__init__()
|
| 155 |
+
self.lin1 = nn.Linear(config.hidden_size, config.mlp_dim)
|
| 156 |
+
self.lin2 = nn.Linear(config.mlp_dim, config.hidden_size)
|
| 157 |
+
self.act = ACT2FN[config.hidden_act]
|
| 158 |
+
|
| 159 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 160 |
+
hidden_states = self.lin1(hidden_states)
|
| 161 |
+
hidden_states = self.act(hidden_states)
|
| 162 |
+
hidden_states = self.lin2(hidden_states)
|
| 163 |
+
return hidden_states
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
# Copied from transformers.models.convnext.modeling_convnext.ConvNextLayerNorm with ConvNext->Sam
|
| 167 |
+
class SamLayerNorm(nn.Module):
|
| 168 |
+
r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
|
| 169 |
+
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height,
|
| 170 |
+
width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width).
|
| 171 |
+
"""
|
| 172 |
+
|
| 173 |
+
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
|
| 174 |
+
super().__init__()
|
| 175 |
+
self.weight = nn.Parameter(torch.ones(normalized_shape))
|
| 176 |
+
self.bias = nn.Parameter(torch.zeros(normalized_shape))
|
| 177 |
+
self.eps = eps
|
| 178 |
+
self.data_format = data_format
|
| 179 |
+
if self.data_format not in ["channels_last", "channels_first"]:
|
| 180 |
+
raise NotImplementedError(f"Unsupported data format: {self.data_format}")
|
| 181 |
+
self.normalized_shape = (normalized_shape,)
|
| 182 |
+
|
| 183 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 184 |
+
if self.data_format == "channels_last":
|
| 185 |
+
x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
| 186 |
+
elif self.data_format == "channels_first":
|
| 187 |
+
input_dtype = x.dtype
|
| 188 |
+
x = x.float()
|
| 189 |
+
u = x.mean(1, keepdim=True)
|
| 190 |
+
s = (x - u).pow(2).mean(1, keepdim=True)
|
| 191 |
+
x = (x - u) / torch.sqrt(s + self.eps)
|
| 192 |
+
x = x.to(dtype=input_dtype)
|
| 193 |
+
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
| 194 |
+
return x
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
class SamAttention(nn.Module):
|
| 198 |
+
"""
|
| 199 |
+
SAM's attention layer that allows for downscaling the size of the embedding after projection to queries, keys, and
|
| 200 |
+
values.
|
| 201 |
+
"""
|
| 202 |
+
|
| 203 |
+
def __init__(self, config, downsample_rate=None):
|
| 204 |
+
super().__init__()
|
| 205 |
+
self.hidden_size = config.hidden_size
|
| 206 |
+
|
| 207 |
+
downsample_rate = config.attention_downsample_rate if downsample_rate is None else downsample_rate
|
| 208 |
+
|
| 209 |
+
self.internal_dim = config.hidden_size // downsample_rate
|
| 210 |
+
self.num_attention_heads = config.num_attention_heads
|
| 211 |
+
if self.internal_dim % config.num_attention_heads != 0:
|
| 212 |
+
raise ValueError("num_attention_heads must divide hidden_size.")
|
| 213 |
+
|
| 214 |
+
self.q_proj = nn.Linear(self.hidden_size, self.internal_dim)
|
| 215 |
+
self.k_proj = nn.Linear(self.hidden_size, self.internal_dim)
|
| 216 |
+
self.v_proj = nn.Linear(self.hidden_size, self.internal_dim)
|
| 217 |
+
self.out_proj = nn.Linear(self.internal_dim, self.hidden_size)
|
| 218 |
+
|
| 219 |
+
def _separate_heads(self, hidden_states: Tensor, num_attention_heads: int) -> Tensor:
|
| 220 |
+
batch, point_batch_size, n_tokens, channel = hidden_states.shape
|
| 221 |
+
c_per_head = channel // num_attention_heads
|
| 222 |
+
hidden_states = hidden_states.reshape(
|
| 223 |
+
batch * point_batch_size, n_tokens, num_attention_heads, c_per_head
|
| 224 |
+
)
|
| 225 |
+
return hidden_states.transpose(1, 2)
|
| 226 |
+
|
| 227 |
+
def _recombine_heads(self, hidden_states: Tensor, point_batch_size: int) -> Tensor:
|
| 228 |
+
batch, n_heads, n_tokens, c_per_head = hidden_states.shape
|
| 229 |
+
hidden_states = hidden_states.transpose(1, 2)
|
| 230 |
+
return hidden_states.reshape(
|
| 231 |
+
batch // point_batch_size, point_batch_size, n_tokens, n_heads * c_per_head
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
def forward(
|
| 235 |
+
self, query: Tensor, key: Tensor, value: Tensor, attention_similarity: Tensor = None
|
| 236 |
+
) -> Tensor:
|
| 237 |
+
# Input projections
|
| 238 |
+
query = self.q_proj(query)
|
| 239 |
+
key = self.k_proj(key)
|
| 240 |
+
value = self.v_proj(value)
|
| 241 |
+
|
| 242 |
+
point_batch_size = query.shape[1]
|
| 243 |
+
# Separate into heads
|
| 244 |
+
query = self._separate_heads(query, self.num_attention_heads)
|
| 245 |
+
key = self._separate_heads(key, self.num_attention_heads)
|
| 246 |
+
value = self._separate_heads(value, self.num_attention_heads)
|
| 247 |
+
|
| 248 |
+
# SamAttention
|
| 249 |
+
_, _, _, c_per_head = query.shape
|
| 250 |
+
attn = query @ key.permute(
|
| 251 |
+
0, 1, 3, 2
|
| 252 |
+
) # batch_size * point_batch_size x N_heads x N_tokens x N_tokens
|
| 253 |
+
attn = attn / math.sqrt(c_per_head)
|
| 254 |
+
attn = torch.softmax(attn, dim=-1)
|
| 255 |
+
|
| 256 |
+
if attention_similarity is not None:
|
| 257 |
+
attn = attn + attention_similarity
|
| 258 |
+
attn = torch.softmax(attn, dim=-1)
|
| 259 |
+
|
| 260 |
+
# Get output
|
| 261 |
+
out = attn @ value
|
| 262 |
+
out = self._recombine_heads(out, point_batch_size)
|
| 263 |
+
out = self.out_proj(out)
|
| 264 |
+
|
| 265 |
+
return out
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
class SamTwoWayAttentionBlock(nn.Module):
|
| 269 |
+
def __init__(self, config, attention_downsample_rate: int = 2, skip_first_layer_pe: bool = False):
|
| 270 |
+
"""
|
| 271 |
+
A transformer block with four layers:
|
| 272 |
+
(1) self-attention of sparse inputs (2) cross attention of sparse inputs -> dense inputs (3) mlp block on
|
| 273 |
+
sparse inputs (4) cross attention of dense inputs -> sparse inputs
|
| 274 |
+
|
| 275 |
+
Arguments:
|
| 276 |
+
config (`SamMaskDecoderConfig`):
|
| 277 |
+
The configuration file used to instantiate the block
|
| 278 |
+
attention_downsample_rate (*optionalk*, int, defaults to 2):
|
| 279 |
+
The downsample ratio of the block used to reduce the inner dim of the attention.
|
| 280 |
+
skip_first_layer_pe (*optional*, bool, defaults to `False`):
|
| 281 |
+
Whether or not to skip the addition of the query_point_embedding on the first layer.
|
| 282 |
+
"""
|
| 283 |
+
super().__init__()
|
| 284 |
+
|
| 285 |
+
self.hidden_size = config.hidden_size
|
| 286 |
+
self.layer_norm_eps = config.layer_norm_eps
|
| 287 |
+
|
| 288 |
+
self.self_attn = SamAttention(config, downsample_rate=1)
|
| 289 |
+
self.layer_norm1 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps)
|
| 290 |
+
|
| 291 |
+
self.cross_attn_token_to_image = SamAttention(config, downsample_rate=attention_downsample_rate)
|
| 292 |
+
self.layer_norm2 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps)
|
| 293 |
+
|
| 294 |
+
self.mlp = SamMLPBlock(config)
|
| 295 |
+
self.layer_norm3 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps)
|
| 296 |
+
|
| 297 |
+
self.layer_norm4 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps)
|
| 298 |
+
self.cross_attn_image_to_token = SamAttention(config, downsample_rate=attention_downsample_rate)
|
| 299 |
+
|
| 300 |
+
self.skip_first_layer_pe = skip_first_layer_pe
|
| 301 |
+
|
| 302 |
+
def forward(
|
| 303 |
+
self,
|
| 304 |
+
queries: Tensor,
|
| 305 |
+
keys: Tensor,
|
| 306 |
+
query_point_embedding: Tensor,
|
| 307 |
+
key_point_embedding: Tensor,
|
| 308 |
+
attention_similarity: Tensor,
|
| 309 |
+
output_attentions: bool = False,
|
| 310 |
+
):
|
| 311 |
+
# Self attention block
|
| 312 |
+
if self.skip_first_layer_pe:
|
| 313 |
+
queries = self.self_attn(query=queries, key=queries, value=queries)
|
| 314 |
+
else:
|
| 315 |
+
query = queries + query_point_embedding
|
| 316 |
+
attn_out = self.self_attn(query=query, key=query, value=queries)
|
| 317 |
+
queries = queries + attn_out
|
| 318 |
+
queries = self.layer_norm1(queries)
|
| 319 |
+
|
| 320 |
+
# Cross attention block, tokens attending to image embedding
|
| 321 |
+
query = queries + query_point_embedding
|
| 322 |
+
key = keys + key_point_embedding
|
| 323 |
+
|
| 324 |
+
attn_out = self.cross_attn_token_to_image(
|
| 325 |
+
query=query, key=key, value=keys, attention_similarity=attention_similarity
|
| 326 |
+
)
|
| 327 |
+
queries = queries + attn_out
|
| 328 |
+
|
| 329 |
+
queries = self.layer_norm2(queries)
|
| 330 |
+
|
| 331 |
+
# MLP block
|
| 332 |
+
mlp_out = self.mlp(queries)
|
| 333 |
+
queries = queries + mlp_out
|
| 334 |
+
queries = self.layer_norm3(queries)
|
| 335 |
+
|
| 336 |
+
# Cross attention block, image embedding attending to tokens
|
| 337 |
+
query = queries + query_point_embedding
|
| 338 |
+
key = keys + key_point_embedding
|
| 339 |
+
|
| 340 |
+
attn_out = self.cross_attn_image_to_token(query=key, key=query, value=queries)
|
| 341 |
+
keys = keys + attn_out
|
| 342 |
+
|
| 343 |
+
keys = self.layer_norm4(keys)
|
| 344 |
+
|
| 345 |
+
outputs = (queries, keys)
|
| 346 |
+
|
| 347 |
+
if output_attentions:
|
| 348 |
+
outputs = outputs + (attn_out,)
|
| 349 |
+
else:
|
| 350 |
+
outputs = outputs + (None,)
|
| 351 |
+
|
| 352 |
+
return outputs
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
class SamTwoWayTransformer(nn.Module):
|
| 356 |
+
def __init__(self, config: SamMaskDecoderConfig):
|
| 357 |
+
super().__init__()
|
| 358 |
+
self.config = config
|
| 359 |
+
|
| 360 |
+
self.num_hidden_layers = config.num_hidden_layers
|
| 361 |
+
self.layers = nn.ModuleList()
|
| 362 |
+
|
| 363 |
+
for i in range(self.num_hidden_layers):
|
| 364 |
+
self.layers.append(SamTwoWayAttentionBlock(config, skip_first_layer_pe=(i == 0)))
|
| 365 |
+
|
| 366 |
+
self.final_attn_token_to_image = SamAttention(config)
|
| 367 |
+
self.layer_norm_final_attn = nn.LayerNorm(config.hidden_size)
|
| 368 |
+
|
| 369 |
+
def forward(
|
| 370 |
+
self,
|
| 371 |
+
point_embeddings: Tensor,
|
| 372 |
+
image_embeddings: Tensor,
|
| 373 |
+
image_positional_embeddings: Tensor,
|
| 374 |
+
attention_similarity: Tensor,
|
| 375 |
+
target_embedding=None,
|
| 376 |
+
output_attentions: Optional[bool] = None,
|
| 377 |
+
output_hidden_states: Optional[bool] = None,
|
| 378 |
+
return_dict: Optional[bool] = None,
|
| 379 |
+
) -> Union[Tuple, BaseModelOutput]:
|
| 380 |
+
output_attentions = (
|
| 381 |
+
output_attentions if output_attentions is not None else self.config.output_attentions
|
| 382 |
+
)
|
| 383 |
+
output_hidden_states = (
|
| 384 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 385 |
+
)
|
| 386 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 387 |
+
|
| 388 |
+
all_attentions = ()
|
| 389 |
+
|
| 390 |
+
if image_embeddings is None:
|
| 391 |
+
raise ValueError("You have to specify an image_embedding")
|
| 392 |
+
|
| 393 |
+
image_embeddings = image_embeddings.flatten(2).permute(0, 2, 1).unsqueeze(1)
|
| 394 |
+
image_positional_embeddings = image_positional_embeddings.flatten(2).permute(0, 2, 1).unsqueeze(1)
|
| 395 |
+
|
| 396 |
+
# Prepare queries
|
| 397 |
+
queries = point_embeddings
|
| 398 |
+
keys = image_embeddings
|
| 399 |
+
|
| 400 |
+
# Apply transformer blocks and final layernorm
|
| 401 |
+
for layer in self.layers:
|
| 402 |
+
if target_embedding is not None:
|
| 403 |
+
queries += target_embedding
|
| 404 |
+
|
| 405 |
+
queries, keys, attention_outputs = layer(
|
| 406 |
+
queries=queries,
|
| 407 |
+
keys=keys,
|
| 408 |
+
query_point_embedding=point_embeddings,
|
| 409 |
+
key_point_embedding=image_positional_embeddings,
|
| 410 |
+
attention_similarity=attention_similarity,
|
| 411 |
+
output_attentions=output_attentions,
|
| 412 |
+
)
|
| 413 |
+
|
| 414 |
+
if output_attentions:
|
| 415 |
+
all_attentions = all_attentions + (attention_outputs,)
|
| 416 |
+
|
| 417 |
+
# Apply the final attenion layer from the points to the image
|
| 418 |
+
query = queries + point_embeddings
|
| 419 |
+
key = keys + image_positional_embeddings
|
| 420 |
+
|
| 421 |
+
attn_out = self.final_attn_token_to_image(query=query, key=key, value=keys)
|
| 422 |
+
|
| 423 |
+
queries = queries + attn_out
|
| 424 |
+
queries = self.layer_norm_final_attn(queries)
|
| 425 |
+
return queries, keys, all_attentions
|
| 426 |
+
|
| 427 |
+
|
| 428 |
+
class SamFeedForward(nn.Module):
|
| 429 |
+
def __init__(
|
| 430 |
+
self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, sigmoid_output: bool = False
|
| 431 |
+
):
|
| 432 |
+
super().__init__()
|
| 433 |
+
self.num_layers = num_layers
|
| 434 |
+
self.activation = nn.ReLU()
|
| 435 |
+
self.proj_in = nn.Linear(input_dim, hidden_dim)
|
| 436 |
+
self.proj_out = nn.Linear(hidden_dim, output_dim)
|
| 437 |
+
self.layers = nn.ModuleList([nn.Linear(hidden_dim, hidden_dim) for _ in range(num_layers - 2)])
|
| 438 |
+
self.sigmoid_output = sigmoid_output
|
| 439 |
+
|
| 440 |
+
def forward(self, hidden_states):
|
| 441 |
+
hidden_states = self.proj_in(hidden_states)
|
| 442 |
+
hidden_states = self.activation(hidden_states)
|
| 443 |
+
for layer in self.layers:
|
| 444 |
+
hidden_states = self.activation(layer(hidden_states))
|
| 445 |
+
|
| 446 |
+
hidden_states = self.proj_out(hidden_states)
|
| 447 |
+
if self.sigmoid_output:
|
| 448 |
+
hidden_states = F.sigmoid(hidden_states)
|
| 449 |
+
return hidden_states
|
| 450 |
+
|
| 451 |
+
|
| 452 |
+
class SamMaskDecoderHQ(nn.Module):
|
| 453 |
+
def __init__(self, config: SamMaskDecoderConfig):
|
| 454 |
+
super().__init__()
|
| 455 |
+
|
| 456 |
+
self.hidden_size = config.hidden_size
|
| 457 |
+
self.vision_encoder_dim = config.vision_encoder_dim
|
| 458 |
+
|
| 459 |
+
self.num_multimask_outputs = config.num_multimask_outputs
|
| 460 |
+
self.num_mask_tokens = config.num_multimask_outputs + 1
|
| 461 |
+
|
| 462 |
+
self.iou_token = nn.Embedding(1, self.hidden_size)
|
| 463 |
+
self.mask_tokens = nn.Embedding(self.num_mask_tokens, self.hidden_size)
|
| 464 |
+
|
| 465 |
+
self.transformer = SamTwoWayTransformer(config)
|
| 466 |
+
|
| 467 |
+
# should we create a new class for this?
|
| 468 |
+
self.upscale_conv1 = nn.ConvTranspose2d(
|
| 469 |
+
self.hidden_size, self.hidden_size // 4, kernel_size=2, stride=2
|
| 470 |
+
)
|
| 471 |
+
self.upscale_conv2 = nn.ConvTranspose2d(
|
| 472 |
+
self.hidden_size // 4, self.hidden_size // 8, kernel_size=2, stride=2
|
| 473 |
+
)
|
| 474 |
+
self.upscale_layer_norm = SamLayerNorm(self.hidden_size // 4, data_format="channels_first")
|
| 475 |
+
self.activation = nn.GELU()
|
| 476 |
+
|
| 477 |
+
mlps_list = []
|
| 478 |
+
for _ in range(self.num_mask_tokens):
|
| 479 |
+
mlps_list += [SamFeedForward(self.hidden_size, self.hidden_size, self.hidden_size // 8, 3)]
|
| 480 |
+
self.output_hypernetworks_mlps = nn.ModuleList(mlps_list)
|
| 481 |
+
|
| 482 |
+
self.iou_prediction_head = SamFeedForward(
|
| 483 |
+
self.hidden_size, config.iou_head_hidden_dim, self.num_mask_tokens, config.iou_head_depth
|
| 484 |
+
)
|
| 485 |
+
|
| 486 |
+
# HQ-SAM parameters
|
| 487 |
+
self.hf_token = nn.Embedding(1, self.hidden_size) # HQ-Ouptput-Token
|
| 488 |
+
self.hf_mlp = SamFeedForward(
|
| 489 |
+
self.hidden_size, self.hidden_size, self.hidden_size // 8, 3
|
| 490 |
+
) # corresponding new MLP layer for HQ-Ouptput-Token
|
| 491 |
+
self.num_mask_tokens = self.num_mask_tokens + 1
|
| 492 |
+
|
| 493 |
+
# three conv fusion layers for obtaining HQ-Feature
|
| 494 |
+
self.compress_vit_feat = nn.Sequential(
|
| 495 |
+
nn.ConvTranspose2d(self.vision_encoder_dim, self.hidden_size, kernel_size=2, stride=2),
|
| 496 |
+
SamLayerNorm(self.hidden_size, data_format="channels_first"),
|
| 497 |
+
nn.GELU(),
|
| 498 |
+
nn.ConvTranspose2d(self.hidden_size, self.hidden_size // 8, kernel_size=2, stride=2),
|
| 499 |
+
)
|
| 500 |
+
|
| 501 |
+
self.embedding_encoder = nn.Sequential(
|
| 502 |
+
nn.ConvTranspose2d(self.hidden_size, self.hidden_size // 4, kernel_size=2, stride=2),
|
| 503 |
+
SamLayerNorm(self.hidden_size // 4, data_format="channels_first"),
|
| 504 |
+
nn.GELU(),
|
| 505 |
+
nn.ConvTranspose2d(self.hidden_size // 4, self.hidden_size // 8, kernel_size=2, stride=2),
|
| 506 |
+
)
|
| 507 |
+
self.embedding_maskfeature = nn.Sequential(
|
| 508 |
+
nn.Conv2d(self.hidden_size // 8, self.hidden_size // 4, 3, 1, 1),
|
| 509 |
+
SamLayerNorm(self.hidden_size // 4, data_format="channels_first"),
|
| 510 |
+
nn.GELU(),
|
| 511 |
+
nn.Conv2d(self.hidden_size // 4, self.hidden_size // 8, 3, 1, 1),
|
| 512 |
+
)
|
| 513 |
+
|
| 514 |
+
def forward(
|
| 515 |
+
self,
|
| 516 |
+
image_embeddings: torch.Tensor,
|
| 517 |
+
image_positional_embeddings: torch.Tensor,
|
| 518 |
+
sparse_prompt_embeddings: torch.Tensor,
|
| 519 |
+
dense_prompt_embeddings: torch.Tensor,
|
| 520 |
+
multimask_output: bool,
|
| 521 |
+
intermediate_vision_embeddings: torch.Tensor,
|
| 522 |
+
hq_token_only: bool = False,
|
| 523 |
+
output_attentions: Optional[bool] = None,
|
| 524 |
+
attention_similarity: torch.Tensor = None,
|
| 525 |
+
target_embedding: torch.Tensor = None,
|
| 526 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 527 |
+
"""
|
| 528 |
+
Predict masks given image and prompt embeddings.
|
| 529 |
+
|
| 530 |
+
Args:
|
| 531 |
+
image_embeddings (`torch.Tensor`):
|
| 532 |
+
the embeddings from the image encoder
|
| 533 |
+
image_positional_embedding (`torch.Tensor`):
|
| 534 |
+
positional encoding with the shape of image_embeddings
|
| 535 |
+
sparse_prompt_embeddings (`torch.Tensor`):
|
| 536 |
+
The embeddings of the points and boxes
|
| 537 |
+
dense_prompt_embeddings (`torch.Tensor`):
|
| 538 |
+
the embeddings of the mask inputs
|
| 539 |
+
multimask_output (bool):
|
| 540 |
+
Whether to return multiple masks or a single mask.
|
| 541 |
+
output_attentions (bool, *optional*):
|
| 542 |
+
Whether or not to return the attentions tensors of all attention layers.
|
| 543 |
+
"""
|
| 544 |
+
batch_size, num_channels, height, width = image_embeddings.shape
|
| 545 |
+
point_batch_size = sparse_prompt_embeddings.shape[1]
|
| 546 |
+
|
| 547 |
+
vit_inter_features = intermediate_vision_embeddings[0].permute(
|
| 548 |
+
0, 3, 1, 2
|
| 549 |
+
) # early-layer ViT feature, after 1st global attention block in ViT
|
| 550 |
+
hq_features = self.embedding_encoder(image_embeddings) + self.compress_vit_feat(vit_inter_features)
|
| 551 |
+
|
| 552 |
+
# Concatenate output tokens
|
| 553 |
+
output_tokens = torch.cat(
|
| 554 |
+
[self.iou_token.weight, self.mask_tokens.weight, self.hf_token.weight], dim=0
|
| 555 |
+
)
|
| 556 |
+
output_tokens = output_tokens.repeat(batch_size, point_batch_size, 1, 1)
|
| 557 |
+
|
| 558 |
+
if sparse_prompt_embeddings.sum().item() != 0:
|
| 559 |
+
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=2)
|
| 560 |
+
else:
|
| 561 |
+
tokens = output_tokens
|
| 562 |
+
point_embeddings = tokens.to(self.iou_token.weight.dtype)
|
| 563 |
+
|
| 564 |
+
# Expand per-image data in batch direction to be per-point
|
| 565 |
+
image_embeddings = image_embeddings + dense_prompt_embeddings
|
| 566 |
+
image_embeddings = image_embeddings.repeat_interleave(point_batch_size, 0)
|
| 567 |
+
image_positional_embeddings = image_positional_embeddings.repeat_interleave(point_batch_size, 0)
|
| 568 |
+
|
| 569 |
+
# Run the transformer, image_positional_embedding are consumed
|
| 570 |
+
point_embedding, image_embeddings, attentions = self.transformer(
|
| 571 |
+
point_embeddings=point_embeddings,
|
| 572 |
+
image_embeddings=image_embeddings,
|
| 573 |
+
image_positional_embeddings=image_positional_embeddings,
|
| 574 |
+
attention_similarity=attention_similarity,
|
| 575 |
+
target_embedding=target_embedding,
|
| 576 |
+
output_attentions=output_attentions,
|
| 577 |
+
)
|
| 578 |
+
iou_token_out = point_embedding[:, :, 0, :]
|
| 579 |
+
mask_tokens_out = point_embedding[:, :, 1 : (1 + self.num_mask_tokens), :]
|
| 580 |
+
|
| 581 |
+
# Upscale mask embeddings and predict masks using the mask tokens
|
| 582 |
+
image_embeddings = image_embeddings.transpose(2, 3).reshape(
|
| 583 |
+
batch_size * point_batch_size, num_channels, height, width
|
| 584 |
+
)
|
| 585 |
+
|
| 586 |
+
upscaled_embedding_sam = self.upscale_conv1(image_embeddings)
|
| 587 |
+
upscaled_embedding_sam = self.activation(self.upscale_layer_norm(upscaled_embedding_sam))
|
| 588 |
+
upscaled_embedding_sam = self.activation(self.upscale_conv2(upscaled_embedding_sam))
|
| 589 |
+
|
| 590 |
+
upscaled_embedding_hq = self.embedding_maskfeature(upscaled_embedding_sam) + hq_features.repeat(
|
| 591 |
+
batch_size * point_batch_size, 1, 1, 1
|
| 592 |
+
)
|
| 593 |
+
|
| 594 |
+
hyper_in_list = []
|
| 595 |
+
for i in range(self.num_mask_tokens):
|
| 596 |
+
mask_out_embedding = mask_tokens_out[:, :, i, :]
|
| 597 |
+
if i < self.num_mask_tokens - 1:
|
| 598 |
+
hyper = self.output_hypernetworks_mlps[i](mask_out_embedding)
|
| 599 |
+
else:
|
| 600 |
+
hyper = self.hf_mlp(mask_out_embedding)
|
| 601 |
+
hyper_in_list.append(hyper)
|
| 602 |
+
hyper_in = torch.stack(hyper_in_list, dim=2)
|
| 603 |
+
|
| 604 |
+
_, num_channels, height, width = upscaled_embedding_sam.shape
|
| 605 |
+
upscaled_embedding_sam = upscaled_embedding_sam.reshape(
|
| 606 |
+
batch_size, point_batch_size, num_channels, height * width
|
| 607 |
+
)
|
| 608 |
+
upscaled_embedding_hq = upscaled_embedding_hq.reshape(
|
| 609 |
+
batch_size, point_batch_size, num_channels, height * width
|
| 610 |
+
)
|
| 611 |
+
|
| 612 |
+
masks_sam = (hyper_in[:, :, : self.num_mask_tokens - 1] @ upscaled_embedding_sam).reshape(
|
| 613 |
+
batch_size, point_batch_size, -1, height, width
|
| 614 |
+
)
|
| 615 |
+
masks_hq = (hyper_in[:, :, self.num_mask_tokens - 1 :] @ upscaled_embedding_hq).reshape(
|
| 616 |
+
batch_size, point_batch_size, 1, height, width
|
| 617 |
+
)
|
| 618 |
+
masks = torch.cat([masks_sam, masks_hq], dim=2)
|
| 619 |
+
|
| 620 |
+
# Generate mask quality predictions
|
| 621 |
+
iou_pred = self.iou_prediction_head(iou_token_out)
|
| 622 |
+
|
| 623 |
+
# Select the correct mask or masks for output
|
| 624 |
+
if multimask_output:
|
| 625 |
+
# mask with highest score
|
| 626 |
+
mask_slice = slice(1, self.num_mask_tokens - 1)
|
| 627 |
+
iou_pred = iou_pred[:, :, mask_slice]
|
| 628 |
+
iou_pred, max_iou_idx = torch.max(iou_pred, dim=2)
|
| 629 |
+
masks_multi = masks[:, :, mask_slice, :, :]
|
| 630 |
+
masks_sam = masks_multi[
|
| 631 |
+
torch.arange(batch_size)[:, None, None],
|
| 632 |
+
torch.arange(point_batch_size)[None, :, None],
|
| 633 |
+
max_iou_idx,
|
| 634 |
+
:,
|
| 635 |
+
:,
|
| 636 |
+
]
|
| 637 |
+
else:
|
| 638 |
+
# single mask output, default
|
| 639 |
+
mask_slice = slice(0, 1)
|
| 640 |
+
iou_pred = iou_pred[:, :, mask_slice]
|
| 641 |
+
masks_sam = masks[:, :, mask_slice, :, :]
|
| 642 |
+
# masks = masks[:, :, mask_slice, :, :]
|
| 643 |
+
# iou_pred = iou_pred[:, :, mask_slice]
|
| 644 |
+
if hq_token_only:
|
| 645 |
+
masks = masks_hq
|
| 646 |
+
else:
|
| 647 |
+
masks = masks_sam + masks_hq
|
| 648 |
+
|
| 649 |
+
outputs = (masks, iou_pred)
|
| 650 |
+
|
| 651 |
+
if output_attentions:
|
| 652 |
+
outputs = outputs + (attentions,)
|
| 653 |
+
else:
|
| 654 |
+
outputs = outputs + (None,)
|
| 655 |
+
|
| 656 |
+
return outputs
|
| 657 |
+
|
| 658 |
+
|
| 659 |
+
class SamPositionalEmbedding(nn.Module):
|
| 660 |
+
def __init__(self, config):
|
| 661 |
+
super().__init__()
|
| 662 |
+
self.scale = config.hidden_size // 2
|
| 663 |
+
self.register_buffer("positional_embedding", self.scale * torch.randn((2, config.num_pos_feats)))
|
| 664 |
+
|
| 665 |
+
def forward(self, input_coords, input_shape=None):
|
| 666 |
+
"""Positionally encode points that are normalized to [0,1]."""
|
| 667 |
+
coordinates = input_coords.clone()
|
| 668 |
+
|
| 669 |
+
if input_shape is not None:
|
| 670 |
+
coordinates[:, :, :, 0] = coordinates[:, :, :, 0] / input_shape[1]
|
| 671 |
+
coordinates[:, :, :, 1] = coordinates[:, :, :, 1] / input_shape[0]
|
| 672 |
+
|
| 673 |
+
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
|
| 674 |
+
coordinates = 2 * coordinates - 1
|
| 675 |
+
coordinates = coordinates.to(self.positional_embedding.dtype)
|
| 676 |
+
coordinates = coordinates @ self.positional_embedding
|
| 677 |
+
coordinates = 2 * np.pi * coordinates
|
| 678 |
+
# outputs d_1 x ... x d_n x channel shape
|
| 679 |
+
return torch.cat([torch.sin(coordinates), torch.cos(coordinates)], dim=-1)
|
| 680 |
+
|
| 681 |
+
|
| 682 |
+
class SamMaskEmbedding(nn.Module):
|
| 683 |
+
def __init__(self, config: SamPromptEncoderConfig):
|
| 684 |
+
super().__init__()
|
| 685 |
+
self.mask_input_channels = config.mask_input_channels // 4
|
| 686 |
+
self.activation = ACT2FN[config.hidden_act]
|
| 687 |
+
self.conv1 = nn.Conv2d(1, self.mask_input_channels, kernel_size=2, stride=2)
|
| 688 |
+
self.conv2 = nn.Conv2d(self.mask_input_channels, config.mask_input_channels, kernel_size=2, stride=2)
|
| 689 |
+
self.conv3 = nn.Conv2d(config.mask_input_channels, config.hidden_size, kernel_size=1)
|
| 690 |
+
self.layer_norm1 = SamLayerNorm(
|
| 691 |
+
self.mask_input_channels, eps=config.layer_norm_eps, data_format="channels_first"
|
| 692 |
+
)
|
| 693 |
+
self.layer_norm2 = SamLayerNorm(
|
| 694 |
+
self.mask_input_channels * 4, eps=config.layer_norm_eps, data_format="channels_first"
|
| 695 |
+
)
|
| 696 |
+
|
| 697 |
+
def forward(self, masks):
|
| 698 |
+
hidden_states = self.conv1(masks)
|
| 699 |
+
hidden_states = self.layer_norm1(hidden_states)
|
| 700 |
+
hidden_states = self.activation(hidden_states)
|
| 701 |
+
|
| 702 |
+
hidden_states = self.conv2(hidden_states)
|
| 703 |
+
hidden_states = self.layer_norm2(hidden_states)
|
| 704 |
+
hidden_states = self.activation(hidden_states)
|
| 705 |
+
dense_embeddings = self.conv3(hidden_states)
|
| 706 |
+
return dense_embeddings
|
| 707 |
+
|
| 708 |
+
|
| 709 |
+
class SamPromptEncoder(nn.Module):
|
| 710 |
+
def __init__(self, config: SamPromptEncoderConfig, shared_patch_embedding):
|
| 711 |
+
super().__init__()
|
| 712 |
+
self.shared_embedding = shared_patch_embedding
|
| 713 |
+
self.mask_embed = SamMaskEmbedding(config)
|
| 714 |
+
self.no_mask_embed = nn.Embedding(1, config.hidden_size)
|
| 715 |
+
|
| 716 |
+
self.image_embedding_size = (config.image_embedding_size, config.image_embedding_size)
|
| 717 |
+
self.input_image_size = config.image_size
|
| 718 |
+
|
| 719 |
+
self.point_embed = nn.ModuleList(
|
| 720 |
+
[nn.Embedding(1, config.hidden_size) for i in range(config.num_point_embeddings)]
|
| 721 |
+
)
|
| 722 |
+
self.hidden_size = config.hidden_size
|
| 723 |
+
self.not_a_point_embed = nn.Embedding(1, config.hidden_size)
|
| 724 |
+
|
| 725 |
+
def _embed_points(self, points: torch.Tensor, labels: torch.Tensor, pad: bool) -> torch.Tensor:
|
| 726 |
+
"""Embeds point prompts."""
|
| 727 |
+
points = points + 0.5 # Shift to center of pixel
|
| 728 |
+
if pad:
|
| 729 |
+
target_point_shape = (points.shape[0], points.shape[1], 1, points.shape[-1])
|
| 730 |
+
target_labels_shape = (points.shape[0], points.shape[1], 1)
|
| 731 |
+
padding_point = torch.zeros(target_point_shape, device=points.device)
|
| 732 |
+
padding_label = -torch.ones(target_labels_shape, device=labels.device)
|
| 733 |
+
points = torch.cat([points, padding_point], dim=2)
|
| 734 |
+
labels = torch.cat([labels, padding_label], dim=2)
|
| 735 |
+
input_shape = (self.input_image_size, self.input_image_size)
|
| 736 |
+
point_embedding = self.shared_embedding(points, input_shape)
|
| 737 |
+
|
| 738 |
+
# torch.where and expanding the labels tensor is required by the ONNX export
|
| 739 |
+
point_embedding = torch.where(labels[..., None] == -1, self.not_a_point_embed.weight, point_embedding)
|
| 740 |
+
|
| 741 |
+
# This is required for the ONNX export. The dtype, device need to be explicitely
|
| 742 |
+
# specificed as otherwise torch.onnx.export interprets as double
|
| 743 |
+
point_embedding = torch.where(
|
| 744 |
+
labels[..., None] != -10,
|
| 745 |
+
point_embedding,
|
| 746 |
+
torch.tensor(0.0, dtype=point_embedding.dtype, device=point_embedding.device),
|
| 747 |
+
)
|
| 748 |
+
|
| 749 |
+
point_embedding = torch.where(
|
| 750 |
+
(labels == 0)[:, :, :, None],
|
| 751 |
+
point_embedding + self.point_embed[0].weight[None, None, :, :],
|
| 752 |
+
point_embedding,
|
| 753 |
+
)
|
| 754 |
+
|
| 755 |
+
point_embedding = torch.where(
|
| 756 |
+
(labels == 1)[:, :, :, None],
|
| 757 |
+
point_embedding + self.point_embed[1].weight[None, None, :, :],
|
| 758 |
+
point_embedding,
|
| 759 |
+
)
|
| 760 |
+
|
| 761 |
+
return point_embedding
|
| 762 |
+
|
| 763 |
+
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
|
| 764 |
+
"""Embeds box prompts."""
|
| 765 |
+
boxes = boxes + 0.5 # Shift to center of pixel
|
| 766 |
+
batch_size, nb_boxes = boxes.shape[:2]
|
| 767 |
+
coords = boxes.reshape(batch_size, nb_boxes, 2, 2)
|
| 768 |
+
input_shape = (self.input_image_size, self.input_image_size)
|
| 769 |
+
corner_embedding = self.shared_embedding(coords, input_shape)
|
| 770 |
+
corner_embedding[:, :, 0, :] += self.point_embed[2].weight
|
| 771 |
+
corner_embedding[:, :, 1, :] += self.point_embed[3].weight
|
| 772 |
+
return corner_embedding
|
| 773 |
+
|
| 774 |
+
def forward(
|
| 775 |
+
self,
|
| 776 |
+
input_points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
| 777 |
+
input_labels: Optional[torch.Tensor],
|
| 778 |
+
input_boxes: Optional[torch.Tensor],
|
| 779 |
+
input_masks: Optional[torch.Tensor],
|
| 780 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 781 |
+
"""
|
| 782 |
+
Embeds different types of prompts, returning both sparse and dense embeddings.
|
| 783 |
+
|
| 784 |
+
Args:
|
| 785 |
+
points (`torch.Tensor`, *optional*):
|
| 786 |
+
point coordinates and labels to embed.
|
| 787 |
+
boxes (`torch.Tensor`, *optional*):
|
| 788 |
+
boxes to embed
|
| 789 |
+
masks (`torch.Tensor`, *optional*):
|
| 790 |
+
masks to embed
|
| 791 |
+
"""
|
| 792 |
+
sparse_embeddings = None
|
| 793 |
+
batch_size = 1
|
| 794 |
+
target_device = self.shared_embedding.positional_embedding.device
|
| 795 |
+
if input_points is not None:
|
| 796 |
+
batch_size, point_batch_size = input_points.shape[:2]
|
| 797 |
+
if input_labels is None:
|
| 798 |
+
raise ValueError("If points are provided, labels must also be provided.")
|
| 799 |
+
point_embeddings = self._embed_points(input_points, input_labels, pad=(input_boxes is None))
|
| 800 |
+
sparse_embeddings = point_embeddings
|
| 801 |
+
if input_boxes is not None:
|
| 802 |
+
batch_size = input_boxes.shape[0]
|
| 803 |
+
box_embeddings = self._embed_boxes(input_boxes)
|
| 804 |
+
if sparse_embeddings is None:
|
| 805 |
+
sparse_embeddings = box_embeddings
|
| 806 |
+
else:
|
| 807 |
+
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=2)
|
| 808 |
+
if input_masks is not None:
|
| 809 |
+
dense_embeddings = self.mask_embed(input_masks)
|
| 810 |
+
else:
|
| 811 |
+
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
|
| 812 |
+
batch_size, -1, self.image_embedding_size[0], self.image_embedding_size[1]
|
| 813 |
+
)
|
| 814 |
+
|
| 815 |
+
if sparse_embeddings is None:
|
| 816 |
+
sparse_embeddings = torch.zeros((batch_size, 1, 1, self.hidden_size), device=target_device)
|
| 817 |
+
|
| 818 |
+
return sparse_embeddings, dense_embeddings
|
| 819 |
+
|
| 820 |
+
|
| 821 |
+
class SamVisionAttention(nn.Module):
|
| 822 |
+
"""Multi-head Attention block with relative position embeddings."""
|
| 823 |
+
|
| 824 |
+
def __init__(self, config, window_size):
|
| 825 |
+
super().__init__()
|
| 826 |
+
input_size = (
|
| 827 |
+
(config.image_size // config.patch_size, config.image_size // config.patch_size)
|
| 828 |
+
if window_size == 0
|
| 829 |
+
else (window_size, window_size)
|
| 830 |
+
)
|
| 831 |
+
|
| 832 |
+
self.num_attention_heads = config.num_attention_heads
|
| 833 |
+
head_dim = config.hidden_size // config.num_attention_heads
|
| 834 |
+
self.scale = head_dim**-0.5
|
| 835 |
+
self.dropout = config.attention_dropout
|
| 836 |
+
|
| 837 |
+
self.qkv = nn.Linear(config.hidden_size, config.hidden_size * 3, bias=config.qkv_bias)
|
| 838 |
+
self.proj = nn.Linear(config.hidden_size, config.hidden_size)
|
| 839 |
+
|
| 840 |
+
self.use_rel_pos = config.use_rel_pos
|
| 841 |
+
if self.use_rel_pos:
|
| 842 |
+
if input_size is None:
|
| 843 |
+
raise ValueError("Input size must be provided if using relative positional encoding.")
|
| 844 |
+
|
| 845 |
+
# initialize relative positional embeddings
|
| 846 |
+
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
|
| 847 |
+
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
|
| 848 |
+
|
| 849 |
+
def get_rel_pos(self, q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
|
| 850 |
+
"""
|
| 851 |
+
Get relative positional embeddings according to the relative positions of
|
| 852 |
+
query and key sizes.
|
| 853 |
+
|
| 854 |
+
Args:
|
| 855 |
+
q_size (int):
|
| 856 |
+
size of the query.
|
| 857 |
+
k_size (int):
|
| 858 |
+
size of key k.
|
| 859 |
+
rel_pos (`torch.Tensor`):
|
| 860 |
+
relative position embeddings (L, channel).
|
| 861 |
+
|
| 862 |
+
Returns:
|
| 863 |
+
Extracted positional embeddings according to relative positions.
|
| 864 |
+
"""
|
| 865 |
+
max_rel_dist = int(2 * max(q_size, k_size) - 1)
|
| 866 |
+
# Interpolate rel pos.
|
| 867 |
+
rel_pos_resized = F.interpolate(
|
| 868 |
+
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
|
| 869 |
+
size=max_rel_dist,
|
| 870 |
+
mode="linear",
|
| 871 |
+
)
|
| 872 |
+
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
|
| 873 |
+
|
| 874 |
+
# Scale the coords with short length if shapes for q and k are different.
|
| 875 |
+
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
|
| 876 |
+
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
|
| 877 |
+
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
|
| 878 |
+
|
| 879 |
+
return rel_pos_resized[relative_coords.long()]
|
| 880 |
+
|
| 881 |
+
def add_decomposed_rel_pos(
|
| 882 |
+
self,
|
| 883 |
+
attn: torch.Tensor,
|
| 884 |
+
query: torch.Tensor,
|
| 885 |
+
rel_pos_h: torch.Tensor,
|
| 886 |
+
rel_pos_w: torch.Tensor,
|
| 887 |
+
q_size: Tuple[int, int],
|
| 888 |
+
k_size: Tuple[int, int],
|
| 889 |
+
) -> torch.Tensor:
|
| 890 |
+
"""
|
| 891 |
+
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
|
| 892 |
+
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py
|
| 893 |
+
|
| 894 |
+
Args:
|
| 895 |
+
attn (`torch.Tensor`):
|
| 896 |
+
attention map.
|
| 897 |
+
query (`torch.Tensor`):
|
| 898 |
+
query q in the attention layer with shape (batch_size, query_height * query_width, channel).
|
| 899 |
+
rel_pos_h (`torch.Tensor`):
|
| 900 |
+
relative position embeddings (Lh, channel) for height axis.
|
| 901 |
+
rel_pos_w (`torch.Tensor`):
|
| 902 |
+
relative position embeddings (Lw, channel) for width axis.
|
| 903 |
+
q_size (tuple):
|
| 904 |
+
spatial sequence size of query q with (query_height, query_width).
|
| 905 |
+
k_size (tuple):
|
| 906 |
+
spatial sequence size of key k with (key_height, key_width).
|
| 907 |
+
|
| 908 |
+
Returns:
|
| 909 |
+
attn (`torch.Tensor`):
|
| 910 |
+
attention map with added relative positional embeddings.
|
| 911 |
+
"""
|
| 912 |
+
query_height, query_width = q_size
|
| 913 |
+
key_height, key_width = k_size
|
| 914 |
+
relative_position_height = self.get_rel_pos(query_height, key_height, rel_pos_h)
|
| 915 |
+
relative_position_width = self.get_rel_pos(query_width, key_width, rel_pos_w)
|
| 916 |
+
|
| 917 |
+
batch_size, _, dim = query.shape
|
| 918 |
+
reshaped_query = query.reshape(batch_size, query_height, query_width, dim)
|
| 919 |
+
rel_h = torch.einsum("bhwc,hkc->bhwk", reshaped_query, relative_position_height)
|
| 920 |
+
rel_w = torch.einsum("bhwc,wkc->bhwk", reshaped_query, relative_position_width)
|
| 921 |
+
attn = attn.reshape(batch_size, query_height, query_width, key_height, key_width)
|
| 922 |
+
attn = attn + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
|
| 923 |
+
attn = attn.reshape(batch_size, query_height * query_width, key_height * key_width)
|
| 924 |
+
return attn
|
| 925 |
+
|
| 926 |
+
def forward(self, hidden_states: torch.Tensor, output_attentions=False) -> torch.Tensor:
|
| 927 |
+
batch_size, height, width, _ = hidden_states.shape
|
| 928 |
+
# qkv with shape (3, batch_size, nHead, height * width, channel)
|
| 929 |
+
qkv = (
|
| 930 |
+
self.qkv(hidden_states)
|
| 931 |
+
.reshape(batch_size, height * width, 3, self.num_attention_heads, -1)
|
| 932 |
+
.permute(2, 0, 3, 1, 4)
|
| 933 |
+
)
|
| 934 |
+
# q, k, v with shape (batch_size * nHead, height * width, channel)
|
| 935 |
+
query, key, value = qkv.reshape(3, batch_size * self.num_attention_heads, height * width, -1).unbind(
|
| 936 |
+
0
|
| 937 |
+
)
|
| 938 |
+
|
| 939 |
+
attn_weights = (query * self.scale) @ key.transpose(-2, -1)
|
| 940 |
+
|
| 941 |
+
if self.use_rel_pos:
|
| 942 |
+
attn_weights = self.add_decomposed_rel_pos(
|
| 943 |
+
attn_weights, query, self.rel_pos_h, self.rel_pos_w, (height, width), (height, width)
|
| 944 |
+
)
|
| 945 |
+
|
| 946 |
+
attn_weights = torch.nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query.dtype)
|
| 947 |
+
|
| 948 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
| 949 |
+
|
| 950 |
+
attn_output = (attn_probs @ value).reshape(batch_size, self.num_attention_heads, height, width, -1)
|
| 951 |
+
attn_output = attn_output.permute(0, 2, 3, 1, 4).reshape(batch_size, height, width, -1)
|
| 952 |
+
|
| 953 |
+
attn_output = self.proj(attn_output)
|
| 954 |
+
|
| 955 |
+
if output_attentions:
|
| 956 |
+
outputs = (attn_output, attn_weights)
|
| 957 |
+
else:
|
| 958 |
+
outputs = (attn_output, None)
|
| 959 |
+
|
| 960 |
+
return outputs
|
| 961 |
+
|
| 962 |
+
|
| 963 |
+
class SamVisionLayer(nn.Module):
|
| 964 |
+
def __init__(self, config, window_size):
|
| 965 |
+
super().__init__()
|
| 966 |
+
self.layer_norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 967 |
+
self.attn = SamVisionAttention(config, window_size)
|
| 968 |
+
self.layer_norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 969 |
+
self.mlp = SamMLPBlock(config)
|
| 970 |
+
self.window_size = window_size
|
| 971 |
+
|
| 972 |
+
def window_partition(
|
| 973 |
+
self, hidden_states: torch.Tensor, window_size: int
|
| 974 |
+
) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
| 975 |
+
"""
|
| 976 |
+
Args:
|
| 977 |
+
Partition into non-overlapping windows with padding if needed.
|
| 978 |
+
hidden_states (tensor): input tokens with [batch_size, height, width, channel]. window_size (int): window
|
| 979 |
+
size.
|
| 980 |
+
|
| 981 |
+
Returns:
|
| 982 |
+
windows: windows after partition with [batch_size * num_windows, window_size, window_size, channel].
|
| 983 |
+
(pad_height, pad_width): padded height and width before partition
|
| 984 |
+
"""
|
| 985 |
+
batch_size, height, width, channel = hidden_states.shape
|
| 986 |
+
|
| 987 |
+
pad_h = (window_size - height % window_size) % window_size
|
| 988 |
+
pad_w = (window_size - width % window_size) % window_size
|
| 989 |
+
hidden_states = F.pad(hidden_states, (0, 0, 0, pad_w, 0, pad_h))
|
| 990 |
+
pad_height, pad_width = height + pad_h, width + pad_w
|
| 991 |
+
|
| 992 |
+
hidden_states = hidden_states.reshape(
|
| 993 |
+
batch_size, pad_height // window_size, window_size, pad_width // window_size, window_size, channel
|
| 994 |
+
)
|
| 995 |
+
windows = (
|
| 996 |
+
hidden_states.permute(0, 1, 3, 2, 4, 5)
|
| 997 |
+
.contiguous()
|
| 998 |
+
.reshape(-1, window_size, window_size, channel)
|
| 999 |
+
)
|
| 1000 |
+
return windows, (pad_height, pad_width)
|
| 1001 |
+
|
| 1002 |
+
def window_unpartition(
|
| 1003 |
+
self,
|
| 1004 |
+
windows: torch.Tensor,
|
| 1005 |
+
window_size: int,
|
| 1006 |
+
padding_shape: Tuple[int, int],
|
| 1007 |
+
original_shape: Tuple[int, int],
|
| 1008 |
+
) -> torch.Tensor:
|
| 1009 |
+
"""
|
| 1010 |
+
Args:
|
| 1011 |
+
Window unpartition into original sequences and removing padding.
|
| 1012 |
+
hidden_states (tensor):
|
| 1013 |
+
input tokens with [batch_size * num_windows, window_size, window_size, channel].
|
| 1014 |
+
window_size (int):
|
| 1015 |
+
window size.
|
| 1016 |
+
padding_shape (Tuple):
|
| 1017 |
+
padded height and width (pad_height, pad_width).
|
| 1018 |
+
original_shape (Tuple): original height and width (height, width) before padding.
|
| 1019 |
+
|
| 1020 |
+
Returns:
|
| 1021 |
+
hidden_states: unpartitioned sequences with [batch_size, height, width, channel].
|
| 1022 |
+
"""
|
| 1023 |
+
pad_height, pad_width = padding_shape
|
| 1024 |
+
height, width = original_shape
|
| 1025 |
+
batch_size = windows.shape[0] // (pad_height * pad_width // window_size // window_size)
|
| 1026 |
+
hidden_states = windows.reshape(
|
| 1027 |
+
batch_size, pad_height // window_size, pad_width // window_size, window_size, window_size, -1
|
| 1028 |
+
)
|
| 1029 |
+
hidden_states = (
|
| 1030 |
+
hidden_states.permute(0, 1, 3, 2, 4, 5)
|
| 1031 |
+
.contiguous()
|
| 1032 |
+
.reshape(batch_size, pad_height, pad_width, -1)
|
| 1033 |
+
)
|
| 1034 |
+
|
| 1035 |
+
hidden_states = hidden_states[:, :height, :width, :].contiguous()
|
| 1036 |
+
return hidden_states
|
| 1037 |
+
|
| 1038 |
+
def forward(
|
| 1039 |
+
self,
|
| 1040 |
+
hidden_states: torch.Tensor,
|
| 1041 |
+
output_attentions: Optional[bool] = False,
|
| 1042 |
+
) -> Tuple[torch.FloatTensor]:
|
| 1043 |
+
residual = hidden_states
|
| 1044 |
+
|
| 1045 |
+
hidden_states = self.layer_norm1(hidden_states)
|
| 1046 |
+
# Window partition
|
| 1047 |
+
if self.window_size > 0:
|
| 1048 |
+
height, width = hidden_states.shape[1], hidden_states.shape[2]
|
| 1049 |
+
hidden_states, padding_shape = self.window_partition(hidden_states, self.window_size)
|
| 1050 |
+
|
| 1051 |
+
hidden_states, attn_weights = self.attn(
|
| 1052 |
+
hidden_states=hidden_states,
|
| 1053 |
+
output_attentions=output_attentions,
|
| 1054 |
+
)
|
| 1055 |
+
# Reverse window partition
|
| 1056 |
+
if self.window_size > 0:
|
| 1057 |
+
hidden_states = self.window_unpartition(
|
| 1058 |
+
hidden_states, self.window_size, padding_shape, (height, width)
|
| 1059 |
+
)
|
| 1060 |
+
|
| 1061 |
+
hidden_states = residual + hidden_states
|
| 1062 |
+
layernorm_output = self.layer_norm2(hidden_states)
|
| 1063 |
+
hidden_states = hidden_states + self.mlp(layernorm_output)
|
| 1064 |
+
|
| 1065 |
+
outputs = (hidden_states,)
|
| 1066 |
+
if output_attentions:
|
| 1067 |
+
outputs += (attn_weights,)
|
| 1068 |
+
|
| 1069 |
+
return outputs
|
| 1070 |
+
|
| 1071 |
+
|
| 1072 |
+
class SamVisionNeck(nn.Module):
|
| 1073 |
+
def __init__(self, config: SamVisionConfig):
|
| 1074 |
+
super().__init__()
|
| 1075 |
+
self.config = config
|
| 1076 |
+
|
| 1077 |
+
self.conv1 = nn.Conv2d(config.hidden_size, config.output_channels, kernel_size=1, bias=False)
|
| 1078 |
+
self.layer_norm1 = SamLayerNorm(config.output_channels, data_format="channels_first")
|
| 1079 |
+
self.conv2 = nn.Conv2d(
|
| 1080 |
+
config.output_channels, config.output_channels, kernel_size=3, padding=1, bias=False
|
| 1081 |
+
)
|
| 1082 |
+
self.layer_norm2 = SamLayerNorm(config.output_channels, data_format="channels_first")
|
| 1083 |
+
|
| 1084 |
+
def forward(self, hidden_states):
|
| 1085 |
+
hidden_states = hidden_states.permute(0, 3, 1, 2)
|
| 1086 |
+
hidden_states = self.conv1(hidden_states)
|
| 1087 |
+
hidden_states = self.layer_norm1(hidden_states)
|
| 1088 |
+
|
| 1089 |
+
hidden_states = self.conv2(hidden_states)
|
| 1090 |
+
hidden_states = self.layer_norm2(hidden_states)
|
| 1091 |
+
return hidden_states
|
| 1092 |
+
|
| 1093 |
+
|
| 1094 |
+
class SamVisionEncoder(nn.Module):
|
| 1095 |
+
def __init__(self, config: SamVisionConfig):
|
| 1096 |
+
super().__init__()
|
| 1097 |
+
self.config = config
|
| 1098 |
+
self.image_size = config.image_size
|
| 1099 |
+
|
| 1100 |
+
self.patch_embed = SamPatchEmbeddings(config)
|
| 1101 |
+
|
| 1102 |
+
self.pos_embed = None
|
| 1103 |
+
if config.use_abs_pos:
|
| 1104 |
+
# Initialize absolute positional embedding with pretrain image size.
|
| 1105 |
+
self.pos_embed = nn.Parameter(
|
| 1106 |
+
torch.zeros(
|
| 1107 |
+
1,
|
| 1108 |
+
config.image_size // config.patch_size,
|
| 1109 |
+
config.image_size // config.patch_size,
|
| 1110 |
+
config.hidden_size,
|
| 1111 |
+
)
|
| 1112 |
+
)
|
| 1113 |
+
|
| 1114 |
+
self.layers = nn.ModuleList()
|
| 1115 |
+
for i in range(config.num_hidden_layers):
|
| 1116 |
+
layer = SamVisionLayer(
|
| 1117 |
+
config,
|
| 1118 |
+
window_size=config.window_size if i not in config.global_attn_indexes else 0,
|
| 1119 |
+
)
|
| 1120 |
+
self.layers.append(layer)
|
| 1121 |
+
|
| 1122 |
+
self.neck = SamVisionNeck(config)
|
| 1123 |
+
|
| 1124 |
+
self.gradient_checkpointing = False
|
| 1125 |
+
|
| 1126 |
+
def get_input_embeddings(self):
|
| 1127 |
+
return self.patch_embed
|
| 1128 |
+
|
| 1129 |
+
def forward(
|
| 1130 |
+
self,
|
| 1131 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 1132 |
+
output_attentions: Optional[bool] = None,
|
| 1133 |
+
output_hidden_states: Optional[bool] = None,
|
| 1134 |
+
return_dict: Optional[bool] = None,
|
| 1135 |
+
) -> Union[Tuple, SamVisionEncoderOutput]:
|
| 1136 |
+
output_attentions = (
|
| 1137 |
+
output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1138 |
+
)
|
| 1139 |
+
output_hidden_states = (
|
| 1140 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1141 |
+
)
|
| 1142 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1143 |
+
|
| 1144 |
+
if pixel_values is None:
|
| 1145 |
+
raise ValueError("You have to specify pixel_values")
|
| 1146 |
+
|
| 1147 |
+
hidden_states = self.patch_embed(pixel_values)
|
| 1148 |
+
if self.pos_embed is not None:
|
| 1149 |
+
hidden_states = hidden_states + self.pos_embed
|
| 1150 |
+
|
| 1151 |
+
all_hidden_states = () if output_hidden_states else None
|
| 1152 |
+
all_self_attentions = () if output_attentions else None
|
| 1153 |
+
|
| 1154 |
+
for i, layer_module in enumerate(self.layers):
|
| 1155 |
+
if self.gradient_checkpointing and self.training:
|
| 1156 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 1157 |
+
layer_module.__call__,
|
| 1158 |
+
hidden_states,
|
| 1159 |
+
)
|
| 1160 |
+
else:
|
| 1161 |
+
layer_outputs = layer_module(hidden_states, output_attentions=output_attentions)
|
| 1162 |
+
|
| 1163 |
+
hidden_states = layer_outputs[0]
|
| 1164 |
+
if output_hidden_states and layer_module.window_size == 0:
|
| 1165 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 1166 |
+
|
| 1167 |
+
if output_attentions:
|
| 1168 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
| 1169 |
+
|
| 1170 |
+
if output_hidden_states:
|
| 1171 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 1172 |
+
|
| 1173 |
+
hidden_states = self.neck(hidden_states)
|
| 1174 |
+
|
| 1175 |
+
if not return_dict:
|
| 1176 |
+
outputs = (hidden_states,)
|
| 1177 |
+
if output_hidden_states:
|
| 1178 |
+
outputs = outputs + (all_hidden_states,)
|
| 1179 |
+
if output_attentions:
|
| 1180 |
+
outputs = outputs + (all_self_attentions,)
|
| 1181 |
+
return outputs
|
| 1182 |
+
|
| 1183 |
+
return SamVisionEncoderOutput(
|
| 1184 |
+
last_hidden_state=hidden_states,
|
| 1185 |
+
hidden_states=all_hidden_states,
|
| 1186 |
+
attentions=all_self_attentions,
|
| 1187 |
+
)
|
| 1188 |
+
|
| 1189 |
+
|
| 1190 |
+
class SamHQPreTrainedModel(PreTrainedModel):
|
| 1191 |
+
config_class = SamHQConfig
|
| 1192 |
+
base_model_prefix = "sam_hq"
|
| 1193 |
+
main_input_name = "pixel_values"
|
| 1194 |
+
_no_split_modules = ["SamVisionAttention"]
|
| 1195 |
+
|
| 1196 |
+
def _init_weights(self, module):
|
| 1197 |
+
std = self.config.initializer_range
|
| 1198 |
+
if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
|
| 1199 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 1200 |
+
if module.bias is not None:
|
| 1201 |
+
module.bias.data.zero_()
|
| 1202 |
+
elif isinstance(module, nn.Embedding):
|
| 1203 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 1204 |
+
if module.padding_idx is not None:
|
| 1205 |
+
module.weight.data[module.padding_idx].zero_()
|
| 1206 |
+
|
| 1207 |
+
|
| 1208 |
+
SAM_START_DOCSTRING = r"""
|
| 1209 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 1210 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 1211 |
+
etc.)
|
| 1212 |
+
|
| 1213 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 1214 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 1215 |
+
and behavior.
|
| 1216 |
+
|
| 1217 |
+
Parameters:
|
| 1218 |
+
config ([`SamConfig`]): Model configuration class with all the parameters of the model.
|
| 1219 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
| 1220 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 1221 |
+
"""
|
| 1222 |
+
|
| 1223 |
+
|
| 1224 |
+
SAM_INPUTS_DOCSTRING = r"""
|
| 1225 |
+
Args:
|
| 1226 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
| 1227 |
+
Pixel values. Pixel values can be obtained using [`SamProcessor`]. See [`SamProcessor.__call__`] for
|
| 1228 |
+
details.
|
| 1229 |
+
input_points (`torch.FloatTensor` of shape `(batch_size, num_points, 2)`):
|
| 1230 |
+
Input 2D spatial points, this is used by the prompt encoder to encode the prompt. Generally yields to much
|
| 1231 |
+
better results. The points can be obtained by passing a list of list of list to the processor that will
|
| 1232 |
+
create corresponding `torch` tensors of dimension 4. The first dimension is the image batch size, the
|
| 1233 |
+
second dimension is the point batch size (i.e. how many segmentation masks do we want the model to predict
|
| 1234 |
+
per input point), the third dimension is the number of points per segmentation mask (it is possible to pass
|
| 1235 |
+
multiple points for a single mask), and the last dimension is the x (vertical) and y (horizontal)
|
| 1236 |
+
coordinates of the point. If a different number of points is passed either for each image, or for each
|
| 1237 |
+
mask, the processor will create "PAD" points that will correspond to the (0, 0) coordinate, and the
|
| 1238 |
+
computation of the embedding will be skipped for these points using the labels.
|
| 1239 |
+
input_labels (`torch.LongTensor` of shape `(batch_size, point_batch_size, num_points)`):
|
| 1240 |
+
Input labels for the points, this is used by the prompt encoder to encode the prompt. According to the
|
| 1241 |
+
official implementation, there are 3 types of labels
|
| 1242 |
+
|
| 1243 |
+
- `1`: the point is a point that contains the object of interest
|
| 1244 |
+
- `0`: the point is a point that does not contain the object of interest
|
| 1245 |
+
- `-1`: the point corresponds to the background
|
| 1246 |
+
|
| 1247 |
+
We added the label:
|
| 1248 |
+
|
| 1249 |
+
- `-10`: the point is a padding point, thus should be ignored by the prompt encoder
|
| 1250 |
+
|
| 1251 |
+
The padding labels should be automatically done by the processor.
|
| 1252 |
+
input_boxes (`torch.FloatTensor` of shape `(batch_size, num_boxes, 4)`):
|
| 1253 |
+
Input boxes for the points, this is used by the prompt encoder to encode the prompt. Generally yields to
|
| 1254 |
+
much better generated masks. The boxes can be obtained by passing a list of list of list to the processor,
|
| 1255 |
+
that will generate a `torch` tensor, with each dimension corresponding respectively to the image batch
|
| 1256 |
+
size, the number of boxes per image and the coordinates of the top left and botton right point of the box.
|
| 1257 |
+
In the order (`x1`, `y1`, `x2`, `y2`):
|
| 1258 |
+
|
| 1259 |
+
- `x1`: the x coordinate of the top left point of the input box
|
| 1260 |
+
- `y1`: the y coordinate of the top left point of the input box
|
| 1261 |
+
- `x2`: the x coordinate of the bottom right point of the input box
|
| 1262 |
+
- `y2`: the y coordinate of the bottom right point of the input box
|
| 1263 |
+
|
| 1264 |
+
input_masks (`torch.FloatTensor` of shape `(batch_size, image_size, image_size)`):
|
| 1265 |
+
SAM model also accepts segmentation masks as input. The mask will be embedded by the prompt encoder to
|
| 1266 |
+
generate a corresponding embedding, that will be fed later on to the mask decoder. These masks needs to be
|
| 1267 |
+
manually fed by the user, and they need to be of shape (`batch_size`, `image_size`, `image_size`).
|
| 1268 |
+
|
| 1269 |
+
image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_channels, window_size, window_size)`):
|
| 1270 |
+
Image embeddings, this is used by the mask decder to generate masks and iou scores. For more memory
|
| 1271 |
+
efficient computation, users can first retrieve the image embeddings using the `get_image_embeddings`
|
| 1272 |
+
method, and then feed them to the `forward` method instead of feeding the `pixel_values`.
|
| 1273 |
+
multimask_output (`bool`, *optional*):
|
| 1274 |
+
In the original implementation and paper, the model always outputs 3 masks per image (or per point / per
|
| 1275 |
+
bounding box if relevant). However, it is possible to just output a single mask, that corresponds to the
|
| 1276 |
+
"best" mask, by specifying `multimask_output=False`.
|
| 1277 |
+
attention_similarity (`torch.FloatTensor`, *optional*):
|
| 1278 |
+
Attention similarity tensor, to be provided to the mask decoder for target-guided attention in case the
|
| 1279 |
+
model is used for personalization as introduced in [PerSAM](https://arxiv.org/abs/2305.03048).
|
| 1280 |
+
target_embedding (`torch.FloatTensor`, *optional*):
|
| 1281 |
+
Embedding of the target concept, to be provided to the mask decoder for target-semantic prompting in case
|
| 1282 |
+
the model is used for personalization as introduced in [PerSAM](https://arxiv.org/abs/2305.03048).
|
| 1283 |
+
output_attentions (`bool`, *optional*):
|
| 1284 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 1285 |
+
tensors for more detail.
|
| 1286 |
+
output_hidden_states (`bool`, *optional*):
|
| 1287 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 1288 |
+
more detail.
|
| 1289 |
+
return_dict (`bool`, *optional*):
|
| 1290 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 1291 |
+
"""
|
| 1292 |
+
|
| 1293 |
+
|
| 1294 |
+
@add_start_docstrings(
|
| 1295 |
+
"Segment Anything Model (SAM) for generating segmentation masks, given an input image and ",
|
| 1296 |
+
" optional 2D location and bounding boxes.",
|
| 1297 |
+
SAM_START_DOCSTRING,
|
| 1298 |
+
)
|
| 1299 |
+
class SamHQModel(SamHQPreTrainedModel):
|
| 1300 |
+
_tied_weights_keys = ["prompt_encoder.shared_embedding.positional_embedding"]
|
| 1301 |
+
|
| 1302 |
+
def __init__(self, config):
|
| 1303 |
+
super().__init__(config)
|
| 1304 |
+
self.shared_image_embedding = SamPositionalEmbedding(config.vision_config)
|
| 1305 |
+
|
| 1306 |
+
self.vision_encoder = SamVisionEncoder(config.vision_config)
|
| 1307 |
+
self.prompt_encoder = SamPromptEncoder(config.prompt_encoder_config, self.shared_image_embedding)
|
| 1308 |
+
if "vision_encoder_dim" not in config.mask_decoder_config.to_dict():
|
| 1309 |
+
config.mask_decoder_config.vision_encoder_dim = config.vision_config.hidden_size
|
| 1310 |
+
self.mask_decoder = SamMaskDecoderHQ(config.mask_decoder_config)
|
| 1311 |
+
|
| 1312 |
+
self.post_init()
|
| 1313 |
+
|
| 1314 |
+
def get_input_embeddings(self):
|
| 1315 |
+
return self.vision_encoder.get_input_embeddings()
|
| 1316 |
+
|
| 1317 |
+
def get_image_wide_positional_embeddings(self):
|
| 1318 |
+
size = self.config.prompt_encoder_config.image_embedding_size
|
| 1319 |
+
target_device = self.shared_image_embedding.positional_embedding.device
|
| 1320 |
+
target_dtype = self.shared_image_embedding.positional_embedding.dtype
|
| 1321 |
+
grid = torch.ones((size, size), device=target_device, dtype=target_dtype)
|
| 1322 |
+
y_embed = grid.cumsum(dim=0) - 0.5
|
| 1323 |
+
x_embed = grid.cumsum(dim=1) - 0.5
|
| 1324 |
+
y_embed = y_embed / size
|
| 1325 |
+
x_embed = x_embed / size
|
| 1326 |
+
|
| 1327 |
+
positional_embedding = self.shared_image_embedding(torch.stack([x_embed, y_embed], dim=-1))
|
| 1328 |
+
return positional_embedding.permute(2, 0, 1).unsqueeze(0) # channel x height x width
|
| 1329 |
+
|
| 1330 |
+
@torch.no_grad()
|
| 1331 |
+
def get_image_embeddings(
|
| 1332 |
+
self,
|
| 1333 |
+
pixel_values,
|
| 1334 |
+
output_attentions: Optional[bool] = None,
|
| 1335 |
+
output_hidden_states: Optional[bool] = None,
|
| 1336 |
+
return_dict: Optional[bool] = None,
|
| 1337 |
+
):
|
| 1338 |
+
r"""
|
| 1339 |
+
Returns the image embeddings by passing the pixel values through the vision encoder.
|
| 1340 |
+
|
| 1341 |
+
Args:
|
| 1342 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
| 1343 |
+
Input pixel values
|
| 1344 |
+
output_attentions (`bool`, *optional*):
|
| 1345 |
+
Whether or not to return the attentions tensors of all attention layers.
|
| 1346 |
+
output_hidden_states (`bool`, *optional*):
|
| 1347 |
+
Whether or not to return the hidden states of all layers.
|
| 1348 |
+
return_dict (`bool`, *optional*):
|
| 1349 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 1350 |
+
|
| 1351 |
+
"""
|
| 1352 |
+
vision_output = self.vision_encoder(
|
| 1353 |
+
pixel_values,
|
| 1354 |
+
output_attentions=output_attentions,
|
| 1355 |
+
output_hidden_states=output_hidden_states,
|
| 1356 |
+
return_dict=return_dict,
|
| 1357 |
+
)
|
| 1358 |
+
image_embeddings = vision_output[0]
|
| 1359 |
+
return image_embeddings
|
| 1360 |
+
|
| 1361 |
+
@torch.no_grad()
|
| 1362 |
+
def get_prompt_embeddings(
|
| 1363 |
+
self,
|
| 1364 |
+
input_points: Optional[torch.FloatTensor] = None,
|
| 1365 |
+
input_labels: Optional[torch.LongTensor] = None,
|
| 1366 |
+
input_boxes: Optional[torch.FloatTensor] = None,
|
| 1367 |
+
input_masks: Optional[torch.LongTensor] = None,
|
| 1368 |
+
):
|
| 1369 |
+
r"""
|
| 1370 |
+
Returns the prompt embeddings by passing the input points, labels, boxes and masks through the prompt encoder.
|
| 1371 |
+
|
| 1372 |
+
Args:
|
| 1373 |
+
input_points (`torch.FloatTensor` of shape `(batch_size, point_batch_size, num_points_per_image, 2)`):
|
| 1374 |
+
Optional input points for the prompt encoder. The padding of the point is automatically done by the
|
| 1375 |
+
processor. `point_batch_size` refers to the number of masks that we want the model to predict per
|
| 1376 |
+
point. The model will output `point_batch_size` times 3 masks in total.
|
| 1377 |
+
input_labels (`torch.LongTensor` of shape `(batch_size, point_batch_size, num_points_per_image)`):
|
| 1378 |
+
Optional input labels for the prompt encoder. The padding of the labels is automatically done by the
|
| 1379 |
+
processor, or can be fed by the user.
|
| 1380 |
+
input_boxes (`torch.FloatTensor` of shape `(batch_size, num_boxes_per_image, 4)`):
|
| 1381 |
+
Optional input boxes for the prompt encoder. The padding of the boxes is automatically done by the
|
| 1382 |
+
processor. users can also pass manually the input boxes.
|
| 1383 |
+
input_masks (`torch.LongTensor` of shape `(batch_size, image_size, image_size)`):
|
| 1384 |
+
Optional input masks for the prompt encoder.
|
| 1385 |
+
"""
|
| 1386 |
+
prompt_output = self.prompt_encoder(
|
| 1387 |
+
input_points=input_points,
|
| 1388 |
+
input_labels=input_labels,
|
| 1389 |
+
input_boxes=input_boxes,
|
| 1390 |
+
input_masks=input_masks,
|
| 1391 |
+
)
|
| 1392 |
+
return prompt_output
|
| 1393 |
+
|
| 1394 |
+
@add_start_docstrings_to_model_forward(SAM_INPUTS_DOCSTRING)
|
| 1395 |
+
def forward(
|
| 1396 |
+
self,
|
| 1397 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 1398 |
+
input_points: Optional[torch.FloatTensor] = None,
|
| 1399 |
+
input_labels: Optional[torch.LongTensor] = None,
|
| 1400 |
+
input_boxes: Optional[torch.FloatTensor] = None,
|
| 1401 |
+
input_masks: Optional[torch.LongTensor] = None,
|
| 1402 |
+
image_embeddings: Optional[torch.FloatTensor] = None,
|
| 1403 |
+
multimask_output: bool = False,
|
| 1404 |
+
hq_token_only: bool = True,
|
| 1405 |
+
attention_similarity: Optional[torch.FloatTensor] = None,
|
| 1406 |
+
target_embedding: Optional[torch.FloatTensor] = None,
|
| 1407 |
+
output_attentions: Optional[bool] = None,
|
| 1408 |
+
output_hidden_states: Optional[bool] = None,
|
| 1409 |
+
return_dict: Optional[bool] = None,
|
| 1410 |
+
**kwargs,
|
| 1411 |
+
) -> List[Dict[str, torch.Tensor]]:
|
| 1412 |
+
r"""
|
| 1413 |
+
Example:
|
| 1414 |
+
|
| 1415 |
+
```python
|
| 1416 |
+
>>> from PIL import Image
|
| 1417 |
+
>>> import requests
|
| 1418 |
+
>>> from transformers import AutoModel, AutoProcessor
|
| 1419 |
+
|
| 1420 |
+
>>> model = AutoModel.from_pretrained("facebook/sam-vit-base")
|
| 1421 |
+
>>> processor = AutoProcessor.from_pretrained("facebook/sam-vit-base")
|
| 1422 |
+
|
| 1423 |
+
>>> img_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/sam-car.png"
|
| 1424 |
+
>>> raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
|
| 1425 |
+
>>> input_points = [[[400, 650]]] # 2D location of a window on the car
|
| 1426 |
+
>>> inputs = processor(images=raw_image, input_points=input_points, return_tensors="pt")
|
| 1427 |
+
|
| 1428 |
+
>>> # Get segmentation mask
|
| 1429 |
+
>>> outputs = model(**inputs)
|
| 1430 |
+
|
| 1431 |
+
>>> # Postprocess masks
|
| 1432 |
+
>>> masks = processor.post_process_masks(
|
| 1433 |
+
... outputs.pred_masks, inputs["original_sizes"], inputs["reshaped_input_sizes"]
|
| 1434 |
+
... )
|
| 1435 |
+
```
|
| 1436 |
+
"""
|
| 1437 |
+
output_attentions = (
|
| 1438 |
+
output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1439 |
+
)
|
| 1440 |
+
output_hidden_states = (
|
| 1441 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1442 |
+
)
|
| 1443 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1444 |
+
|
| 1445 |
+
if pixel_values is None and image_embeddings is None:
|
| 1446 |
+
raise ValueError("Either pixel_values or image_embeddings must be provided.")
|
| 1447 |
+
|
| 1448 |
+
if pixel_values is not None and image_embeddings is not None:
|
| 1449 |
+
raise ValueError("Only one of pixel_values and image_embeddings can be provided.")
|
| 1450 |
+
|
| 1451 |
+
if input_points is not None and len(input_points.shape) != 4:
|
| 1452 |
+
raise ValueError(
|
| 1453 |
+
"The input_points must be a 4D tensor. Of shape `batch_size`, `point_batch_size`, `nb_points_per_image`, `2`.",
|
| 1454 |
+
" got {}.".format(input_points.shape),
|
| 1455 |
+
)
|
| 1456 |
+
if input_boxes is not None and len(input_boxes.shape) != 3:
|
| 1457 |
+
raise ValueError(
|
| 1458 |
+
"The input_points must be a 3D tensor. Of shape `batch_size`, `nb_boxes`, `4`.",
|
| 1459 |
+
" got {}.".format(input_boxes.shape),
|
| 1460 |
+
)
|
| 1461 |
+
if input_points is not None and input_boxes is not None:
|
| 1462 |
+
point_batch_size = input_points.shape[1]
|
| 1463 |
+
box_batch_size = input_boxes.shape[1]
|
| 1464 |
+
if point_batch_size != box_batch_size:
|
| 1465 |
+
raise ValueError(
|
| 1466 |
+
"You should provide as many bounding boxes as input points per box. Got {} and {}.".format(
|
| 1467 |
+
point_batch_size, box_batch_size
|
| 1468 |
+
)
|
| 1469 |
+
)
|
| 1470 |
+
|
| 1471 |
+
image_positional_embeddings = self.get_image_wide_positional_embeddings()
|
| 1472 |
+
# repeat with batch size
|
| 1473 |
+
batch_size = pixel_values.shape[0] if pixel_values is not None else image_embeddings.shape[0]
|
| 1474 |
+
image_positional_embeddings = image_positional_embeddings.repeat(batch_size, 1, 1, 1)
|
| 1475 |
+
|
| 1476 |
+
vision_attentions = None
|
| 1477 |
+
vision_hidden_states = None
|
| 1478 |
+
|
| 1479 |
+
if pixel_values is not None:
|
| 1480 |
+
vision_outputs = self.vision_encoder(
|
| 1481 |
+
pixel_values,
|
| 1482 |
+
output_attentions=output_attentions,
|
| 1483 |
+
output_hidden_states=output_hidden_states,
|
| 1484 |
+
return_dict=return_dict,
|
| 1485 |
+
)
|
| 1486 |
+
image_embeddings = vision_outputs[0]
|
| 1487 |
+
|
| 1488 |
+
if output_hidden_states:
|
| 1489 |
+
vision_hidden_states = vision_outputs[1]
|
| 1490 |
+
if output_attentions:
|
| 1491 |
+
vision_attentions = vision_outputs[-1]
|
| 1492 |
+
|
| 1493 |
+
if input_points is not None and input_labels is None:
|
| 1494 |
+
input_labels = torch.ones_like(
|
| 1495 |
+
input_points[:, :, :, 0], dtype=torch.int, device=input_points.device
|
| 1496 |
+
)
|
| 1497 |
+
|
| 1498 |
+
if input_points is not None and image_embeddings.shape[0] != input_points.shape[0]:
|
| 1499 |
+
raise ValueError(
|
| 1500 |
+
"The batch size of the image embeddings and the input points must be the same. ",
|
| 1501 |
+
"Got {} and {} respectively.".format(image_embeddings.shape[0], input_points.shape[0]),
|
| 1502 |
+
" if you want to pass multiple points for the same image, make sure that you passed ",
|
| 1503 |
+
" input_points of shape (batch_size, point_batch_size, num_points_per_image, 3) and ",
|
| 1504 |
+
" input_labels of shape (batch_size, point_batch_size, num_points_per_image)",
|
| 1505 |
+
)
|
| 1506 |
+
|
| 1507 |
+
sparse_embeddings, dense_embeddings = self.prompt_encoder(
|
| 1508 |
+
input_points=input_points,
|
| 1509 |
+
input_labels=input_labels,
|
| 1510 |
+
input_boxes=input_boxes,
|
| 1511 |
+
input_masks=input_masks,
|
| 1512 |
+
)
|
| 1513 |
+
|
| 1514 |
+
low_res_masks, iou_predictions, mask_decoder_attentions = self.mask_decoder(
|
| 1515 |
+
image_embeddings=image_embeddings,
|
| 1516 |
+
image_positional_embeddings=image_positional_embeddings,
|
| 1517 |
+
sparse_prompt_embeddings=sparse_embeddings,
|
| 1518 |
+
dense_prompt_embeddings=dense_embeddings,
|
| 1519 |
+
multimask_output=multimask_output,
|
| 1520 |
+
intermediate_vision_embeddings=vision_hidden_states[1:],
|
| 1521 |
+
hq_token_only=hq_token_only,
|
| 1522 |
+
attention_similarity=attention_similarity,
|
| 1523 |
+
target_embedding=target_embedding,
|
| 1524 |
+
output_attentions=output_attentions,
|
| 1525 |
+
)
|
| 1526 |
+
|
| 1527 |
+
if not return_dict:
|
| 1528 |
+
output = (iou_predictions, low_res_masks)
|
| 1529 |
+
if output_hidden_states:
|
| 1530 |
+
output = output + (vision_hidden_states,)
|
| 1531 |
+
|
| 1532 |
+
if output_attentions:
|
| 1533 |
+
output = output + (vision_attentions, mask_decoder_attentions)
|
| 1534 |
+
return output
|
| 1535 |
+
|
| 1536 |
+
return SamImageSegmentationOutput(
|
| 1537 |
+
iou_scores=iou_predictions,
|
| 1538 |
+
pred_masks=low_res_masks,
|
| 1539 |
+
vision_hidden_states=vision_hidden_states,
|
| 1540 |
+
vision_attentions=vision_attentions,
|
| 1541 |
+
mask_decoder_attentions=mask_decoder_attentions,
|
| 1542 |
+
)
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"do_convert_rgb": true,
|
| 3 |
+
"do_normalize": true,
|
| 4 |
+
"do_pad": true,
|
| 5 |
+
"do_rescale": true,
|
| 6 |
+
"do_resize": true,
|
| 7 |
+
"image_mean": [
|
| 8 |
+
0.485,
|
| 9 |
+
0.456,
|
| 10 |
+
0.406
|
| 11 |
+
],
|
| 12 |
+
"image_processor_type": "SamImageProcessor",
|
| 13 |
+
"image_std": [
|
| 14 |
+
0.229,
|
| 15 |
+
0.224,
|
| 16 |
+
0.225
|
| 17 |
+
],
|
| 18 |
+
"mask_pad_size": {
|
| 19 |
+
"height": 256,
|
| 20 |
+
"width": 256
|
| 21 |
+
},
|
| 22 |
+
"mask_size": {
|
| 23 |
+
"longest_edge": 256
|
| 24 |
+
},
|
| 25 |
+
"pad_size": {
|
| 26 |
+
"height": 1024,
|
| 27 |
+
"width": 1024
|
| 28 |
+
},
|
| 29 |
+
"processor_class": "SamProcessor",
|
| 30 |
+
"resample": 2,
|
| 31 |
+
"rescale_factor": 0.00392156862745098,
|
| 32 |
+
"size": {
|
| 33 |
+
"longest_edge": 1024
|
| 34 |
+
}
|
| 35 |
+
}
|