Ubuntu
commited on
Commit
路
8bb2147
1
Parent(s):
857379d
modified: README.md
Browse filesnew file: pipelines.ts
new file: widget-example.ts
- README.md +1 -3
- pipelines.ts +675 -0
- widget-example.ts +125 -0
README.md
CHANGED
|
@@ -9,8 +9,6 @@ model-index:
|
|
| 9 |
results: []
|
| 10 |
---
|
| 11 |
|
| 12 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 13 |
-
should probably proofread and complete it, then remove this comment. -->
|
| 14 |
|
| 15 |
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
| 16 |
<details><summary>See axolotl config</summary>
|
|
@@ -152,4 +150,4 @@ The following hyperparameters were used during training:
|
|
| 152 |
- Transformers 4.39.0.dev0
|
| 153 |
- Pytorch 2.1.2+cu118
|
| 154 |
- Datasets 2.18.0
|
| 155 |
-
- Tokenizers 0.15.0
|
|
|
|
| 9 |
results: []
|
| 10 |
---
|
| 11 |
|
|
|
|
|
|
|
| 12 |
|
| 13 |
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
| 14 |
<details><summary>See axolotl config</summary>
|
|
|
|
| 150 |
- Transformers 4.39.0.dev0
|
| 151 |
- Pytorch 2.1.2+cu118
|
| 152 |
- Datasets 2.18.0
|
| 153 |
+
- Tokenizers 0.15.0
|
pipelines.ts
ADDED
|
@@ -0,0 +1,675 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
export const MODALITIES = ["cv", "nlp", "audio", "tabular", "multimodal", "rl", "other"] as const;
|
| 2 |
+
|
| 3 |
+
export type Modality = (typeof MODALITIES)[number];
|
| 4 |
+
|
| 5 |
+
export const MODALITY_LABELS = {
|
| 6 |
+
multimodal: "Multimodal",
|
| 7 |
+
nlp: "Natural Language Processing",
|
| 8 |
+
audio: "Audio",
|
| 9 |
+
cv: "Computer Vision",
|
| 10 |
+
rl: "Reinforcement Learning",
|
| 11 |
+
tabular: "Tabular",
|
| 12 |
+
other: "Other",
|
| 13 |
+
} satisfies Record<Modality, string>;
|
| 14 |
+
|
| 15 |
+
/**
|
| 16 |
+
* Public interface for a sub task.
|
| 17 |
+
*
|
| 18 |
+
* This can be used in a model card's `model-index` metadata.
|
| 19 |
+
* and is more granular classification that can grow significantly
|
| 20 |
+
* over time as new tasks are added.
|
| 21 |
+
*/
|
| 22 |
+
export interface SubTask {
|
| 23 |
+
/**
|
| 24 |
+
* type of the task (e.g. audio-source-separation)
|
| 25 |
+
*/
|
| 26 |
+
type: string;
|
| 27 |
+
/**
|
| 28 |
+
* displayed name of the task (e.g. Audio Source Separation)
|
| 29 |
+
*/
|
| 30 |
+
name: string;
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
/**
|
| 34 |
+
* Public interface for a PipelineData.
|
| 35 |
+
*
|
| 36 |
+
* This information corresponds to a pipeline type (aka task)
|
| 37 |
+
* in the Hub.
|
| 38 |
+
*/
|
| 39 |
+
export interface PipelineData {
|
| 40 |
+
/**
|
| 41 |
+
* displayed name of the task (e.g. Text Classification)
|
| 42 |
+
*/
|
| 43 |
+
name: string;
|
| 44 |
+
subtasks?: SubTask[];
|
| 45 |
+
modality: Modality;
|
| 46 |
+
/**
|
| 47 |
+
* color for the tag icon.
|
| 48 |
+
*/
|
| 49 |
+
color: "blue" | "green" | "indigo" | "orange" | "red" | "yellow";
|
| 50 |
+
/**
|
| 51 |
+
* whether to hide in /models filters
|
| 52 |
+
*/
|
| 53 |
+
hideInModels?: boolean;
|
| 54 |
+
/**
|
| 55 |
+
* whether to hide in /datasets filters
|
| 56 |
+
*/
|
| 57 |
+
hideInDatasets?: boolean;
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
/// Coarse-grained taxonomy of tasks
|
| 61 |
+
///
|
| 62 |
+
/// This type is used in multiple places in the Hugging Face
|
| 63 |
+
/// ecosystem:
|
| 64 |
+
/// - To determine which widget to show.
|
| 65 |
+
/// - To determine which endpoint of Inference Endpoints to use.
|
| 66 |
+
/// - As filters at the left of models and datasets page.
|
| 67 |
+
///
|
| 68 |
+
/// Note that this is sensitive to order.
|
| 69 |
+
/// For each domain, the order should be of decreasing specificity.
|
| 70 |
+
/// This will impact the default pipeline tag of a model when not
|
| 71 |
+
/// specified.
|
| 72 |
+
export const PIPELINE_DATA = {
|
| 73 |
+
"text-classification": {
|
| 74 |
+
name: "Text Classification",
|
| 75 |
+
subtasks: [
|
| 76 |
+
{
|
| 77 |
+
type: "acceptability-classification",
|
| 78 |
+
name: "Acceptability Classification",
|
| 79 |
+
},
|
| 80 |
+
{
|
| 81 |
+
type: "entity-linking-classification",
|
| 82 |
+
name: "Entity Linking Classification",
|
| 83 |
+
},
|
| 84 |
+
{
|
| 85 |
+
type: "fact-checking",
|
| 86 |
+
name: "Fact Checking",
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
type: "intent-classification",
|
| 90 |
+
name: "Intent Classification",
|
| 91 |
+
},
|
| 92 |
+
{
|
| 93 |
+
type: "language-identification",
|
| 94 |
+
name: "Language Identification",
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
type: "multi-class-classification",
|
| 98 |
+
name: "Multi Class Classification",
|
| 99 |
+
},
|
| 100 |
+
{
|
| 101 |
+
type: "multi-label-classification",
|
| 102 |
+
name: "Multi Label Classification",
|
| 103 |
+
},
|
| 104 |
+
{
|
| 105 |
+
type: "multi-input-text-classification",
|
| 106 |
+
name: "Multi-input Text Classification",
|
| 107 |
+
},
|
| 108 |
+
{
|
| 109 |
+
type: "natural-language-inference",
|
| 110 |
+
name: "Natural Language Inference",
|
| 111 |
+
},
|
| 112 |
+
{
|
| 113 |
+
type: "semantic-similarity-classification",
|
| 114 |
+
name: "Semantic Similarity Classification",
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
type: "sentiment-classification",
|
| 118 |
+
name: "Sentiment Classification",
|
| 119 |
+
},
|
| 120 |
+
{
|
| 121 |
+
type: "topic-classification",
|
| 122 |
+
name: "Topic Classification",
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
type: "semantic-similarity-scoring",
|
| 126 |
+
name: "Semantic Similarity Scoring",
|
| 127 |
+
},
|
| 128 |
+
{
|
| 129 |
+
type: "sentiment-scoring",
|
| 130 |
+
name: "Sentiment Scoring",
|
| 131 |
+
},
|
| 132 |
+
{
|
| 133 |
+
type: "sentiment-analysis",
|
| 134 |
+
name: "Sentiment Analysis",
|
| 135 |
+
},
|
| 136 |
+
{
|
| 137 |
+
type: "hate-speech-detection",
|
| 138 |
+
name: "Hate Speech Detection",
|
| 139 |
+
},
|
| 140 |
+
{
|
| 141 |
+
type: "text-scoring",
|
| 142 |
+
name: "Text Scoring",
|
| 143 |
+
},
|
| 144 |
+
],
|
| 145 |
+
modality: "nlp",
|
| 146 |
+
color: "orange",
|
| 147 |
+
},
|
| 148 |
+
"token-classification": {
|
| 149 |
+
name: "Token Classification",
|
| 150 |
+
subtasks: [
|
| 151 |
+
{
|
| 152 |
+
type: "named-entity-recognition",
|
| 153 |
+
name: "Named Entity Recognition",
|
| 154 |
+
},
|
| 155 |
+
{
|
| 156 |
+
type: "part-of-speech",
|
| 157 |
+
name: "Part of Speech",
|
| 158 |
+
},
|
| 159 |
+
{
|
| 160 |
+
type: "parsing",
|
| 161 |
+
name: "Parsing",
|
| 162 |
+
},
|
| 163 |
+
{
|
| 164 |
+
type: "lemmatization",
|
| 165 |
+
name: "Lemmatization",
|
| 166 |
+
},
|
| 167 |
+
{
|
| 168 |
+
type: "word-sense-disambiguation",
|
| 169 |
+
name: "Word Sense Disambiguation",
|
| 170 |
+
},
|
| 171 |
+
{
|
| 172 |
+
type: "coreference-resolution",
|
| 173 |
+
name: "Coreference-resolution",
|
| 174 |
+
},
|
| 175 |
+
],
|
| 176 |
+
modality: "nlp",
|
| 177 |
+
color: "blue",
|
| 178 |
+
},
|
| 179 |
+
"table-question-answering": {
|
| 180 |
+
name: "Table Question Answering",
|
| 181 |
+
modality: "nlp",
|
| 182 |
+
color: "green",
|
| 183 |
+
},
|
| 184 |
+
"question-answering": {
|
| 185 |
+
name: "Question Answering",
|
| 186 |
+
subtasks: [
|
| 187 |
+
{
|
| 188 |
+
type: "extractive-qa",
|
| 189 |
+
name: "Extractive QA",
|
| 190 |
+
},
|
| 191 |
+
{
|
| 192 |
+
type: "open-domain-qa",
|
| 193 |
+
name: "Open Domain QA",
|
| 194 |
+
},
|
| 195 |
+
{
|
| 196 |
+
type: "closed-domain-qa",
|
| 197 |
+
name: "Closed Domain QA",
|
| 198 |
+
},
|
| 199 |
+
],
|
| 200 |
+
modality: "nlp",
|
| 201 |
+
color: "blue",
|
| 202 |
+
},
|
| 203 |
+
"zero-shot-classification": {
|
| 204 |
+
name: "Zero-Shot Classification",
|
| 205 |
+
modality: "nlp",
|
| 206 |
+
color: "yellow",
|
| 207 |
+
},
|
| 208 |
+
translation: {
|
| 209 |
+
name: "Translation",
|
| 210 |
+
modality: "nlp",
|
| 211 |
+
color: "green",
|
| 212 |
+
},
|
| 213 |
+
summarization: {
|
| 214 |
+
name: "Summarization",
|
| 215 |
+
subtasks: [
|
| 216 |
+
{
|
| 217 |
+
type: "news-articles-summarization",
|
| 218 |
+
name: "News Articles Summarization",
|
| 219 |
+
},
|
| 220 |
+
{
|
| 221 |
+
type: "news-articles-headline-generation",
|
| 222 |
+
name: "News Articles Headline Generation",
|
| 223 |
+
},
|
| 224 |
+
],
|
| 225 |
+
modality: "nlp",
|
| 226 |
+
color: "indigo",
|
| 227 |
+
},
|
| 228 |
+
"feature-extraction": {
|
| 229 |
+
name: "Feature Extraction",
|
| 230 |
+
modality: "nlp",
|
| 231 |
+
color: "red",
|
| 232 |
+
},
|
| 233 |
+
"text-generation": {
|
| 234 |
+
name: "Text Generation",
|
| 235 |
+
subtasks: [
|
| 236 |
+
{
|
| 237 |
+
type: "dialogue-modeling",
|
| 238 |
+
name: "Dialogue Modeling",
|
| 239 |
+
},
|
| 240 |
+
{
|
| 241 |
+
type: "dialogue-generation",
|
| 242 |
+
name: "Dialogue Generation",
|
| 243 |
+
},
|
| 244 |
+
{
|
| 245 |
+
type: "conversational",
|
| 246 |
+
name: "Conversational",
|
| 247 |
+
},
|
| 248 |
+
{
|
| 249 |
+
type: "language-modeling",
|
| 250 |
+
name: "Language Modeling",
|
| 251 |
+
},
|
| 252 |
+
],
|
| 253 |
+
modality: "nlp",
|
| 254 |
+
color: "indigo",
|
| 255 |
+
},
|
| 256 |
+
"text2text-generation": {
|
| 257 |
+
name: "Text2Text Generation",
|
| 258 |
+
subtasks: [
|
| 259 |
+
{
|
| 260 |
+
type: "text-simplification",
|
| 261 |
+
name: "Text simplification",
|
| 262 |
+
},
|
| 263 |
+
{
|
| 264 |
+
type: "explanation-generation",
|
| 265 |
+
name: "Explanation Generation",
|
| 266 |
+
},
|
| 267 |
+
{
|
| 268 |
+
type: "abstractive-qa",
|
| 269 |
+
name: "Abstractive QA",
|
| 270 |
+
},
|
| 271 |
+
{
|
| 272 |
+
type: "open-domain-abstractive-qa",
|
| 273 |
+
name: "Open Domain Abstractive QA",
|
| 274 |
+
},
|
| 275 |
+
{
|
| 276 |
+
type: "closed-domain-qa",
|
| 277 |
+
name: "Closed Domain QA",
|
| 278 |
+
},
|
| 279 |
+
{
|
| 280 |
+
type: "open-book-qa",
|
| 281 |
+
name: "Open Book QA",
|
| 282 |
+
},
|
| 283 |
+
{
|
| 284 |
+
type: "closed-book-qa",
|
| 285 |
+
name: "Closed Book QA",
|
| 286 |
+
},
|
| 287 |
+
],
|
| 288 |
+
modality: "nlp",
|
| 289 |
+
color: "indigo",
|
| 290 |
+
},
|
| 291 |
+
"fill-mask": {
|
| 292 |
+
name: "Fill-Mask",
|
| 293 |
+
subtasks: [
|
| 294 |
+
{
|
| 295 |
+
type: "slot-filling",
|
| 296 |
+
name: "Slot Filling",
|
| 297 |
+
},
|
| 298 |
+
{
|
| 299 |
+
type: "masked-language-modeling",
|
| 300 |
+
name: "Masked Language Modeling",
|
| 301 |
+
},
|
| 302 |
+
],
|
| 303 |
+
modality: "nlp",
|
| 304 |
+
color: "red",
|
| 305 |
+
},
|
| 306 |
+
"sentence-similarity": {
|
| 307 |
+
name: "Sentence Similarity",
|
| 308 |
+
modality: "nlp",
|
| 309 |
+
color: "yellow",
|
| 310 |
+
},
|
| 311 |
+
"text-to-speech": {
|
| 312 |
+
name: "Text-to-Speech",
|
| 313 |
+
modality: "audio",
|
| 314 |
+
color: "yellow",
|
| 315 |
+
},
|
| 316 |
+
"text-to-audio": {
|
| 317 |
+
name: "Text-to-Audio",
|
| 318 |
+
modality: "audio",
|
| 319 |
+
color: "yellow",
|
| 320 |
+
},
|
| 321 |
+
"automatic-speech-recognition": {
|
| 322 |
+
name: "Automatic Speech Recognition",
|
| 323 |
+
modality: "audio",
|
| 324 |
+
color: "yellow",
|
| 325 |
+
},
|
| 326 |
+
"audio-to-audio": {
|
| 327 |
+
name: "Audio-to-Audio",
|
| 328 |
+
modality: "audio",
|
| 329 |
+
color: "blue",
|
| 330 |
+
},
|
| 331 |
+
"audio-classification": {
|
| 332 |
+
name: "Audio Classification",
|
| 333 |
+
subtasks: [
|
| 334 |
+
{
|
| 335 |
+
type: "keyword-spotting",
|
| 336 |
+
name: "Keyword Spotting",
|
| 337 |
+
},
|
| 338 |
+
{
|
| 339 |
+
type: "speaker-identification",
|
| 340 |
+
name: "Speaker Identification",
|
| 341 |
+
},
|
| 342 |
+
{
|
| 343 |
+
type: "audio-intent-classification",
|
| 344 |
+
name: "Audio Intent Classification",
|
| 345 |
+
},
|
| 346 |
+
{
|
| 347 |
+
type: "audio-emotion-recognition",
|
| 348 |
+
name: "Audio Emotion Recognition",
|
| 349 |
+
},
|
| 350 |
+
{
|
| 351 |
+
type: "audio-language-identification",
|
| 352 |
+
name: "Audio Language Identification",
|
| 353 |
+
},
|
| 354 |
+
],
|
| 355 |
+
modality: "audio",
|
| 356 |
+
color: "green",
|
| 357 |
+
},
|
| 358 |
+
"voice-activity-detection": {
|
| 359 |
+
name: "Voice Activity Detection",
|
| 360 |
+
modality: "audio",
|
| 361 |
+
color: "red",
|
| 362 |
+
},
|
| 363 |
+
"depth-estimation": {
|
| 364 |
+
name: "Depth Estimation",
|
| 365 |
+
modality: "cv",
|
| 366 |
+
color: "yellow",
|
| 367 |
+
},
|
| 368 |
+
"image-classification": {
|
| 369 |
+
name: "Image Classification",
|
| 370 |
+
subtasks: [
|
| 371 |
+
{
|
| 372 |
+
type: "multi-label-image-classification",
|
| 373 |
+
name: "Multi Label Image Classification",
|
| 374 |
+
},
|
| 375 |
+
{
|
| 376 |
+
type: "multi-class-image-classification",
|
| 377 |
+
name: "Multi Class Image Classification",
|
| 378 |
+
},
|
| 379 |
+
],
|
| 380 |
+
modality: "cv",
|
| 381 |
+
color: "blue",
|
| 382 |
+
},
|
| 383 |
+
"object-detection": {
|
| 384 |
+
name: "Object Detection",
|
| 385 |
+
subtasks: [
|
| 386 |
+
{
|
| 387 |
+
type: "face-detection",
|
| 388 |
+
name: "Face Detection",
|
| 389 |
+
},
|
| 390 |
+
{
|
| 391 |
+
type: "vehicle-detection",
|
| 392 |
+
name: "Vehicle Detection",
|
| 393 |
+
},
|
| 394 |
+
],
|
| 395 |
+
modality: "cv",
|
| 396 |
+
color: "yellow",
|
| 397 |
+
},
|
| 398 |
+
"image-segmentation": {
|
| 399 |
+
name: "Image Segmentation",
|
| 400 |
+
subtasks: [
|
| 401 |
+
{
|
| 402 |
+
type: "instance-segmentation",
|
| 403 |
+
name: "Instance Segmentation",
|
| 404 |
+
},
|
| 405 |
+
{
|
| 406 |
+
type: "semantic-segmentation",
|
| 407 |
+
name: "Semantic Segmentation",
|
| 408 |
+
},
|
| 409 |
+
{
|
| 410 |
+
type: "panoptic-segmentation",
|
| 411 |
+
name: "Panoptic Segmentation",
|
| 412 |
+
},
|
| 413 |
+
],
|
| 414 |
+
modality: "cv",
|
| 415 |
+
color: "green",
|
| 416 |
+
},
|
| 417 |
+
"text-to-image": {
|
| 418 |
+
name: "Text-to-Image",
|
| 419 |
+
modality: "cv",
|
| 420 |
+
color: "yellow",
|
| 421 |
+
},
|
| 422 |
+
"image-to-text": {
|
| 423 |
+
name: "Image-to-Text",
|
| 424 |
+
subtasks: [
|
| 425 |
+
{
|
| 426 |
+
type: "image-captioning",
|
| 427 |
+
name: "Image Captioning",
|
| 428 |
+
},
|
| 429 |
+
],
|
| 430 |
+
modality: "cv",
|
| 431 |
+
color: "red",
|
| 432 |
+
},
|
| 433 |
+
"image-to-image": {
|
| 434 |
+
name: "Image-to-Image",
|
| 435 |
+
subtasks: [
|
| 436 |
+
{
|
| 437 |
+
type: "image-inpainting",
|
| 438 |
+
name: "Image Inpainting",
|
| 439 |
+
},
|
| 440 |
+
{
|
| 441 |
+
type: "image-colorization",
|
| 442 |
+
name: "Image Colorization",
|
| 443 |
+
},
|
| 444 |
+
{
|
| 445 |
+
type: "super-resolution",
|
| 446 |
+
name: "Super Resolution",
|
| 447 |
+
},
|
| 448 |
+
],
|
| 449 |
+
modality: "cv",
|
| 450 |
+
color: "indigo",
|
| 451 |
+
},
|
| 452 |
+
"image-to-video": {
|
| 453 |
+
name: "Image-to-Video",
|
| 454 |
+
modality: "cv",
|
| 455 |
+
color: "indigo",
|
| 456 |
+
},
|
| 457 |
+
"unconditional-image-generation": {
|
| 458 |
+
name: "Unconditional Image Generation",
|
| 459 |
+
modality: "cv",
|
| 460 |
+
color: "green",
|
| 461 |
+
},
|
| 462 |
+
"video-classification": {
|
| 463 |
+
name: "Video Classification",
|
| 464 |
+
modality: "cv",
|
| 465 |
+
color: "blue",
|
| 466 |
+
},
|
| 467 |
+
"reinforcement-learning": {
|
| 468 |
+
name: "Reinforcement Learning",
|
| 469 |
+
modality: "rl",
|
| 470 |
+
color: "red",
|
| 471 |
+
},
|
| 472 |
+
robotics: {
|
| 473 |
+
name: "Robotics",
|
| 474 |
+
modality: "rl",
|
| 475 |
+
subtasks: [
|
| 476 |
+
{
|
| 477 |
+
type: "grasping",
|
| 478 |
+
name: "Grasping",
|
| 479 |
+
},
|
| 480 |
+
{
|
| 481 |
+
type: "task-planning",
|
| 482 |
+
name: "Task Planning",
|
| 483 |
+
},
|
| 484 |
+
],
|
| 485 |
+
color: "blue",
|
| 486 |
+
},
|
| 487 |
+
"tabular-classification": {
|
| 488 |
+
name: "Tabular Classification",
|
| 489 |
+
modality: "tabular",
|
| 490 |
+
subtasks: [
|
| 491 |
+
{
|
| 492 |
+
type: "tabular-multi-class-classification",
|
| 493 |
+
name: "Tabular Multi Class Classification",
|
| 494 |
+
},
|
| 495 |
+
{
|
| 496 |
+
type: "tabular-multi-label-classification",
|
| 497 |
+
name: "Tabular Multi Label Classification",
|
| 498 |
+
},
|
| 499 |
+
],
|
| 500 |
+
color: "blue",
|
| 501 |
+
},
|
| 502 |
+
"tabular-regression": {
|
| 503 |
+
name: "Tabular Regression",
|
| 504 |
+
modality: "tabular",
|
| 505 |
+
subtasks: [
|
| 506 |
+
{
|
| 507 |
+
type: "tabular-single-column-regression",
|
| 508 |
+
name: "Tabular Single Column Regression",
|
| 509 |
+
},
|
| 510 |
+
],
|
| 511 |
+
color: "blue",
|
| 512 |
+
},
|
| 513 |
+
"tabular-to-text": {
|
| 514 |
+
name: "Tabular to Text",
|
| 515 |
+
modality: "tabular",
|
| 516 |
+
subtasks: [
|
| 517 |
+
{
|
| 518 |
+
type: "rdf-to-text",
|
| 519 |
+
name: "RDF to text",
|
| 520 |
+
},
|
| 521 |
+
],
|
| 522 |
+
color: "blue",
|
| 523 |
+
hideInModels: true,
|
| 524 |
+
},
|
| 525 |
+
"table-to-text": {
|
| 526 |
+
name: "Table to Text",
|
| 527 |
+
modality: "nlp",
|
| 528 |
+
color: "blue",
|
| 529 |
+
hideInModels: true,
|
| 530 |
+
},
|
| 531 |
+
"multiple-choice": {
|
| 532 |
+
name: "Multiple Choice",
|
| 533 |
+
subtasks: [
|
| 534 |
+
{
|
| 535 |
+
type: "multiple-choice-qa",
|
| 536 |
+
name: "Multiple Choice QA",
|
| 537 |
+
},
|
| 538 |
+
{
|
| 539 |
+
type: "multiple-choice-coreference-resolution",
|
| 540 |
+
name: "Multiple Choice Coreference Resolution",
|
| 541 |
+
},
|
| 542 |
+
],
|
| 543 |
+
modality: "nlp",
|
| 544 |
+
color: "blue",
|
| 545 |
+
hideInModels: true,
|
| 546 |
+
},
|
| 547 |
+
"text-retrieval": {
|
| 548 |
+
name: "Text Retrieval",
|
| 549 |
+
subtasks: [
|
| 550 |
+
{
|
| 551 |
+
type: "document-retrieval",
|
| 552 |
+
name: "Document Retrieval",
|
| 553 |
+
},
|
| 554 |
+
{
|
| 555 |
+
type: "utterance-retrieval",
|
| 556 |
+
name: "Utterance Retrieval",
|
| 557 |
+
},
|
| 558 |
+
{
|
| 559 |
+
type: "entity-linking-retrieval",
|
| 560 |
+
name: "Entity Linking Retrieval",
|
| 561 |
+
},
|
| 562 |
+
{
|
| 563 |
+
type: "fact-checking-retrieval",
|
| 564 |
+
name: "Fact Checking Retrieval",
|
| 565 |
+
},
|
| 566 |
+
],
|
| 567 |
+
modality: "nlp",
|
| 568 |
+
color: "indigo",
|
| 569 |
+
hideInModels: true,
|
| 570 |
+
},
|
| 571 |
+
"time-series-forecasting": {
|
| 572 |
+
name: "Time Series Forecasting",
|
| 573 |
+
modality: "tabular",
|
| 574 |
+
subtasks: [
|
| 575 |
+
{
|
| 576 |
+
type: "univariate-time-series-forecasting",
|
| 577 |
+
name: "Univariate Time Series Forecasting",
|
| 578 |
+
},
|
| 579 |
+
{
|
| 580 |
+
type: "multivariate-time-series-forecasting",
|
| 581 |
+
name: "Multivariate Time Series Forecasting",
|
| 582 |
+
},
|
| 583 |
+
],
|
| 584 |
+
color: "blue",
|
| 585 |
+
hideInModels: true,
|
| 586 |
+
},
|
| 587 |
+
"text-to-video": {
|
| 588 |
+
name: "Text-to-Video",
|
| 589 |
+
modality: "cv",
|
| 590 |
+
color: "green",
|
| 591 |
+
},
|
| 592 |
+
"image-text-to-text": {
|
| 593 |
+
name: "Image-Text-to-Text",
|
| 594 |
+
modality: "multimodal",
|
| 595 |
+
color: "red",
|
| 596 |
+
hideInDatasets: true,
|
| 597 |
+
},
|
| 598 |
+
"visual-question-answering": {
|
| 599 |
+
name: "Visual Question Answering",
|
| 600 |
+
subtasks: [
|
| 601 |
+
{
|
| 602 |
+
type: "visual-question-answering",
|
| 603 |
+
name: "Visual Question Answering",
|
| 604 |
+
},
|
| 605 |
+
],
|
| 606 |
+
modality: "multimodal",
|
| 607 |
+
color: "red",
|
| 608 |
+
},
|
| 609 |
+
"document-question-answering": {
|
| 610 |
+
name: "Document Question Answering",
|
| 611 |
+
subtasks: [
|
| 612 |
+
{
|
| 613 |
+
type: "document-question-answering",
|
| 614 |
+
name: "Document Question Answering",
|
| 615 |
+
},
|
| 616 |
+
],
|
| 617 |
+
modality: "multimodal",
|
| 618 |
+
color: "blue",
|
| 619 |
+
hideInDatasets: true,
|
| 620 |
+
},
|
| 621 |
+
"zero-shot-image-classification": {
|
| 622 |
+
name: "Zero-Shot Image Classification",
|
| 623 |
+
modality: "cv",
|
| 624 |
+
color: "yellow",
|
| 625 |
+
},
|
| 626 |
+
"graph-ml": {
|
| 627 |
+
name: "Graph Machine Learning",
|
| 628 |
+
modality: "other",
|
| 629 |
+
color: "green",
|
| 630 |
+
},
|
| 631 |
+
"mask-generation": {
|
| 632 |
+
name: "Mask Generation",
|
| 633 |
+
modality: "cv",
|
| 634 |
+
color: "indigo",
|
| 635 |
+
},
|
| 636 |
+
"zero-shot-object-detection": {
|
| 637 |
+
name: "Zero-Shot Object Detection",
|
| 638 |
+
modality: "cv",
|
| 639 |
+
color: "yellow",
|
| 640 |
+
},
|
| 641 |
+
"text-to-3d": {
|
| 642 |
+
name: "Text-to-3D",
|
| 643 |
+
modality: "cv",
|
| 644 |
+
color: "yellow",
|
| 645 |
+
},
|
| 646 |
+
"image-to-3d": {
|
| 647 |
+
name: "Image-to-3D",
|
| 648 |
+
modality: "cv",
|
| 649 |
+
color: "green",
|
| 650 |
+
},
|
| 651 |
+
"image-feature-extraction": {
|
| 652 |
+
name: "Image Feature Extraction",
|
| 653 |
+
modality: "cv",
|
| 654 |
+
color: "indigo",
|
| 655 |
+
},
|
| 656 |
+
other: {
|
| 657 |
+
name: "Other",
|
| 658 |
+
modality: "other",
|
| 659 |
+
color: "blue",
|
| 660 |
+
hideInModels: true,
|
| 661 |
+
hideInDatasets: true,
|
| 662 |
+
},
|
| 663 |
+
} satisfies Record<string, PipelineData>;
|
| 664 |
+
|
| 665 |
+
export type PipelineType = keyof typeof PIPELINE_DATA;
|
| 666 |
+
|
| 667 |
+
export type WidgetType = PipelineType | "conversational";
|
| 668 |
+
|
| 669 |
+
export const PIPELINE_TYPES = Object.keys(PIPELINE_DATA) as PipelineType[];
|
| 670 |
+
|
| 671 |
+
export const SUBTASK_TYPES = Object.values(PIPELINE_DATA)
|
| 672 |
+
.flatMap((data) => ("subtasks" in data ? data.subtasks : []))
|
| 673 |
+
.map((s) => s.type);
|
| 674 |
+
|
| 675 |
+
export const PIPELINE_TYPES_SET = new Set(PIPELINE_TYPES);
|
widget-example.ts
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
type TableData = Record<string, (string | number)[]>;
|
| 3 |
+
|
| 4 |
+
//#region outputs
|
| 5 |
+
export type WidgetExampleOutputLabels = Array<{ label: string; score: number }>;
|
| 6 |
+
export interface WidgetExampleOutputAnswerScore {
|
| 7 |
+
answer: string;
|
| 8 |
+
score: number;
|
| 9 |
+
}
|
| 10 |
+
export interface WidgetExampleOutputText {
|
| 11 |
+
text: string;
|
| 12 |
+
}
|
| 13 |
+
export interface WidgetExampleOutputUrl {
|
| 14 |
+
url: string;
|
| 15 |
+
}
|
| 16 |
+
|
| 17 |
+
export type WidgetExampleOutput =
|
| 18 |
+
| WidgetExampleOutputLabels
|
| 19 |
+
| WidgetExampleOutputAnswerScore
|
| 20 |
+
| WidgetExampleOutputText
|
| 21 |
+
| WidgetExampleOutputUrl;
|
| 22 |
+
//#endregion
|
| 23 |
+
|
| 24 |
+
export interface WidgetExampleBase<TOutput> {
|
| 25 |
+
example_title?: string;
|
| 26 |
+
group?: string;
|
| 27 |
+
/**
|
| 28 |
+
* Potential overrides to API parameters for this specific example
|
| 29 |
+
* (takes precedences over the model card metadata's inference.parameters)
|
| 30 |
+
*/
|
| 31 |
+
parameters?: {
|
| 32 |
+
/// token-classification
|
| 33 |
+
aggregation_strategy?: string;
|
| 34 |
+
/// text-generation
|
| 35 |
+
top_k?: number;
|
| 36 |
+
top_p?: number;
|
| 37 |
+
temperature?: number;
|
| 38 |
+
max_new_tokens?: number;
|
| 39 |
+
do_sample?: boolean;
|
| 40 |
+
/// text-to-image
|
| 41 |
+
negative_prompt?: string;
|
| 42 |
+
guidance_scale?: number;
|
| 43 |
+
num_inference_steps?: number;
|
| 44 |
+
};
|
| 45 |
+
/**
|
| 46 |
+
* Optional output
|
| 47 |
+
*/
|
| 48 |
+
output?: TOutput;
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
export interface ChatMessage {
|
| 52 |
+
role: "user" | "assistant" | "system";
|
| 53 |
+
content: string;
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
export interface WidgetExampleChatInput<TOutput = WidgetExampleOutput> extends WidgetExampleBase<TOutput> {
|
| 57 |
+
messages: ChatMessage[];
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
export interface WidgetExampleTextInput<TOutput = WidgetExampleOutput> extends WidgetExampleBase<TOutput> {
|
| 61 |
+
text: string;
|
| 62 |
+
}
|
| 63 |
+
|
| 64 |
+
export interface WidgetExampleTextAndContextInput<TOutput = WidgetExampleOutput>
|
| 65 |
+
extends WidgetExampleTextInput<TOutput> {
|
| 66 |
+
context: string;
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
export interface WidgetExampleTextAndTableInput<TOutput = WidgetExampleOutput> extends WidgetExampleTextInput<TOutput> {
|
| 70 |
+
table: TableData;
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
export interface WidgetExampleAssetInput<TOutput = WidgetExampleOutput> extends WidgetExampleBase<TOutput> {
|
| 74 |
+
src: string;
|
| 75 |
+
}
|
| 76 |
+
export interface WidgetExampleAssetAndPromptInput<TOutput = WidgetExampleOutput>
|
| 77 |
+
extends WidgetExampleAssetInput<TOutput> {
|
| 78 |
+
prompt: string;
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
+
export type WidgetExampleAssetAndTextInput<TOutput = WidgetExampleOutput> = WidgetExampleAssetInput<TOutput> &
|
| 82 |
+
WidgetExampleTextInput<TOutput>;
|
| 83 |
+
|
| 84 |
+
export type WidgetExampleAssetAndZeroShotInput<TOutput = WidgetExampleOutput> = WidgetExampleAssetInput<TOutput> &
|
| 85 |
+
WidgetExampleZeroShotTextInput<TOutput>;
|
| 86 |
+
|
| 87 |
+
export interface WidgetExampleStructuredDataInput<TOutput = WidgetExampleOutput> extends WidgetExampleBase<TOutput> {
|
| 88 |
+
structured_data: TableData;
|
| 89 |
+
}
|
| 90 |
+
|
| 91 |
+
export interface WidgetExampleTableDataInput<TOutput = WidgetExampleOutput> extends WidgetExampleBase<TOutput> {
|
| 92 |
+
table: TableData;
|
| 93 |
+
}
|
| 94 |
+
|
| 95 |
+
export interface WidgetExampleZeroShotTextInput<TOutput = WidgetExampleOutput> extends WidgetExampleTextInput<TOutput> {
|
| 96 |
+
text: string;
|
| 97 |
+
candidate_labels: string;
|
| 98 |
+
multi_class: boolean;
|
| 99 |
+
}
|
| 100 |
+
|
| 101 |
+
export interface WidgetExampleSentenceSimilarityInput<TOutput = WidgetExampleOutput>
|
| 102 |
+
extends WidgetExampleBase<TOutput> {
|
| 103 |
+
source_sentence: string;
|
| 104 |
+
sentences: string[];
|
| 105 |
+
}
|
| 106 |
+
|
| 107 |
+
//#endregion
|
| 108 |
+
|
| 109 |
+
export type WidgetExample<TOutput = WidgetExampleOutput> =
|
| 110 |
+
| WidgetExampleChatInput<TOutput>
|
| 111 |
+
| WidgetExampleTextInput<TOutput>
|
| 112 |
+
| WidgetExampleTextAndContextInput<TOutput>
|
| 113 |
+
| WidgetExampleTextAndTableInput<TOutput>
|
| 114 |
+
| WidgetExampleAssetInput<TOutput>
|
| 115 |
+
| WidgetExampleAssetAndPromptInput<TOutput>
|
| 116 |
+
| WidgetExampleAssetAndTextInput<TOutput>
|
| 117 |
+
| WidgetExampleAssetAndZeroShotInput<TOutput>
|
| 118 |
+
| WidgetExampleStructuredDataInput<TOutput>
|
| 119 |
+
| WidgetExampleTableDataInput<TOutput>
|
| 120 |
+
| WidgetExampleZeroShotTextInput<TOutput>
|
| 121 |
+
| WidgetExampleSentenceSimilarityInput<TOutput>;
|
| 122 |
+
|
| 123 |
+
type KeysOfUnion<T> = T extends unknown ? keyof T : never;
|
| 124 |
+
|
| 125 |
+
export type WidgetExampleAttribute = KeysOfUnion<WidgetExample>;
|