--- tags: - autotrain - text-classification language: - en widget: - text: "INSTRUCTION:\nReview the given chart and find the outlier.\nINPUT:\nData Series A: 0, 5, 8, 10, 11, 10, 9\nOUTPUT:\nThe outlier of the given data series is 11, as it is numerically greater than the rest of the numbers in the series.\n" datasets: - dvilasuero/autotrain-data-alpaca-bs-detector co2_eq_emissions: emissions: 0.4102361717910936 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 46079114807 - CO2 Emissions (in grams): 0.4102 ## Validation Metrics - Loss: 0.305 - Accuracy: 0.891 - Macro F1: 0.887 - Micro F1: 0.891 - Weighted F1: 0.891 - Macro Precision: 0.890 - Micro Precision: 0.891 - Weighted Precision: 0.891 - Macro Recall: 0.885 - Micro Recall: 0.891 - Weighted Recall: 0.891 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/dvilasuero/autotrain-alpaca-bs-detector-46079114807 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("dvilasuero/autotrain-alpaca-bs-detector-46079114807", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("dvilasuero/autotrain-alpaca-bs-detector-46079114807", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```