groot_autogluon_predictor_w_hpo
Model Description
This model was trained using AutoGluon Multimodal. The best-performing architecture was ResNet18 (timm_image).
The following model is an AutoGluon Multimodal Image Classifier created using Hyperparameter Optimization. This model utilizes a groot image set with a binary classifier "has_groot" or "doesn't have groot", ultimately working to classify which images have a groot figuring within it, and which do not.
Hyperparameters
- 'model.names': ['timm_image']
- 'model.timm_image.checkpoint_name': ['resnet18']
- 'optim.lr': 2.96e-4
- 'env.per_gpu_batch_size': 16
- 'optim.weight_decay': 1.6e-6
- 'optim.max_epochs': 50
Training & Early Stopping
Utilized ASHA early-stopping scheduler, and an HPO timeout of 900 seconds.
Evaluation
Test set metrics: -'accuracy': 0.9 -'f1': 0.899
Confusion Matrix
Per Class Metrics
| Class | Precision | Recall | f1-score |
|---|---|---|---|
| 0 | 0.833 | 1.0 | 0.909 |
| 1 | 1.0 | 0.8 | 0.899 |
Data Augmentation
Dataset utilized found here: https://huggingface.co/datasets/FaiyazAzam/hw1-image-ds-groot-224
- RandomResizedCrop(224)
- RandomHorizontalFlip(p=0.5)
- ColorJitter
- Normalize(mean=[...], std=[...])
Input & Preprocessing
- Input resolution: 224x224 RGB images
- Preprocessing: Resize to 224x224 and normalize with ImageNet mean/std.
Known Failure Modes
- Struggles with extreme lighting variations
- Confuses class A and B if object is partially occluded
Usage
from autogluon.multimodal import MultiModalPredictor
predictor = MultiModalPredictor.load('groot_autogluon_predictor_w_hpo')
pred = predictor.predict("example.jpg")
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support