ed-neo4j commited on
Commit
2236015
·
verified ·
1 Parent(s): b45b6a3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -4
README.md CHANGED
@@ -30,6 +30,7 @@ You will need an a machine with:
30
  - 40GB+ of GPU Memory
31
  - Python 3.10 (tested)
32
 
 
33
  - Create a Python Environment
34
  - `pip install unsloth`
35
 
@@ -46,7 +47,6 @@ model, tokenizer = FastLanguageModel.from_pretrained(
46
  max_seq_length = 50000,
47
  dtype = None,
48
  load_in_4bit = True,
49
- token = HF_TOKEN, # use one if using gated models
50
  )
51
  # It is interesting to see model architecture
52
  print (model)
@@ -54,8 +54,7 @@ print (model)
54
  #load model for Unsloth inference (2x faster inference)
55
  FastLanguageModel.for_inference(model)
56
 
57
- #Prepare into data for the model
58
-
59
  SYSTEM_PROMPT = """
60
  Task: Generate Cypher statement to query a graph database.
61
  Instructions: Use only the provided relationship types and properties in the schema.
@@ -86,7 +85,7 @@ messages = [
86
  #Apply the tokenizer chat template to the input messages)
87
  prompt_text = tokenizer.apply_chat_template(messages, add_generation_prompt=True,tokenize=False)
88
 
89
- #Turn the prompt text into a set of tokens and load tokens to GPU
90
  inputs = tokenizer([prompt_text], return_tensors = "pt").to("cuda")
91
 
92
  #Generate cypher (streaming mode on)
 
30
  - 40GB+ of GPU Memory
31
  - Python 3.10 (tested)
32
 
33
+ Next:
34
  - Create a Python Environment
35
  - `pip install unsloth`
36
 
 
47
  max_seq_length = 50000,
48
  dtype = None,
49
  load_in_4bit = True,
 
50
  )
51
  # It is interesting to see model architecture
52
  print (model)
 
54
  #load model for Unsloth inference (2x faster inference)
55
  FastLanguageModel.for_inference(model)
56
 
57
+ #Prepare data for the model
 
58
  SYSTEM_PROMPT = """
59
  Task: Generate Cypher statement to query a graph database.
60
  Instructions: Use only the provided relationship types and properties in the schema.
 
85
  #Apply the tokenizer chat template to the input messages)
86
  prompt_text = tokenizer.apply_chat_template(messages, add_generation_prompt=True,tokenize=False)
87
 
88
+ #Turn the prompt text into a set of tokens and load them to GPU
89
  inputs = tokenizer([prompt_text], return_tensors = "pt").to("cuda")
90
 
91
  #Generate cypher (streaming mode on)