Update norm.py
Browse files
norm.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
|
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
-
def _cast_if_autocast_enabled(tensor):
|
| 4 |
if torch.is_autocast_enabled():
|
| 5 |
if tensor.device.type == 'cuda':
|
| 6 |
dtype = torch.get_autocast_gpu_dtype()
|
|
@@ -13,10 +14,10 @@ def _cast_if_autocast_enabled(tensor):
|
|
| 13 |
|
| 14 |
class LPLayerNorm(torch.nn.LayerNorm):
|
| 15 |
|
| 16 |
-
def __init__(self, normalized_shape, eps=1e-05, elementwise_affine=True, device=None, dtype=None):
|
| 17 |
super().__init__(normalized_shape=normalized_shape, eps=eps, elementwise_affine=elementwise_affine, device=device, dtype=dtype)
|
| 18 |
|
| 19 |
-
def forward(self, x):
|
| 20 |
module_device = x.device
|
| 21 |
downcast_x = _cast_if_autocast_enabled(x)
|
| 22 |
downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
|
|
@@ -24,7 +25,7 @@ class LPLayerNorm(torch.nn.LayerNorm):
|
|
| 24 |
with torch.autocast(enabled=False, device_type=module_device.type):
|
| 25 |
return torch.nn.functional.layer_norm(downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps)
|
| 26 |
|
| 27 |
-
def rms_norm(x, weight=None, eps=1e-05):
|
| 28 |
output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps)
|
| 29 |
if weight is not None:
|
| 30 |
return output * weight
|
|
@@ -32,7 +33,7 @@ def rms_norm(x, weight=None, eps=1e-05):
|
|
| 32 |
|
| 33 |
class RMSNorm(torch.nn.Module):
|
| 34 |
|
| 35 |
-
def __init__(self, normalized_shape, eps=1e-05, weight=True, dtype=None, device=None):
|
| 36 |
super().__init__()
|
| 37 |
self.eps = eps
|
| 38 |
if weight:
|
|
@@ -40,17 +41,17 @@ class RMSNorm(torch.nn.Module):
|
|
| 40 |
else:
|
| 41 |
self.register_parameter('weight', None)
|
| 42 |
|
| 43 |
-
def forward(self, x):
|
| 44 |
return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype)
|
| 45 |
|
| 46 |
class LPRMSNorm(RMSNorm):
|
| 47 |
|
| 48 |
-
def __init__(self, normalized_shape, eps=1e-05, weight=True, dtype=None, device=None):
|
| 49 |
super().__init__(normalized_shape=normalized_shape, eps=eps, weight=weight, dtype=dtype, device=device)
|
| 50 |
|
| 51 |
-
def forward(self, x):
|
| 52 |
downcast_x = _cast_if_autocast_enabled(x)
|
| 53 |
downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
|
| 54 |
with torch.autocast(enabled=False, device_type=x.device.type):
|
| 55 |
return rms_norm(downcast_x, downcast_weight, self.eps).to(dtype=x.dtype)
|
| 56 |
-
NORM_CLASS_REGISTRY = {'layernorm': torch.nn.LayerNorm, 'low_precision_layernorm': LPLayerNorm, 'rmsnorm': RMSNorm, 'low_precision_rmsnorm': LPRMSNorm}
|
|
|
|
| 1 |
+
from typing import Dict, List, Optional, Type, Union
|
| 2 |
import torch
|
| 3 |
|
| 4 |
+
def _cast_if_autocast_enabled(tensor: torch.Tensor) -> torch.Tensor:
|
| 5 |
if torch.is_autocast_enabled():
|
| 6 |
if tensor.device.type == 'cuda':
|
| 7 |
dtype = torch.get_autocast_gpu_dtype()
|
|
|
|
| 14 |
|
| 15 |
class LPLayerNorm(torch.nn.LayerNorm):
|
| 16 |
|
| 17 |
+
def __init__(self, normalized_shape: Union[int, List[int], torch.Size], eps: float=1e-05, elementwise_affine: bool=True, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None):
|
| 18 |
super().__init__(normalized_shape=normalized_shape, eps=eps, elementwise_affine=elementwise_affine, device=device, dtype=dtype)
|
| 19 |
|
| 20 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 21 |
module_device = x.device
|
| 22 |
downcast_x = _cast_if_autocast_enabled(x)
|
| 23 |
downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
|
|
|
|
| 25 |
with torch.autocast(enabled=False, device_type=module_device.type):
|
| 26 |
return torch.nn.functional.layer_norm(downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps)
|
| 27 |
|
| 28 |
+
def rms_norm(x: torch.Tensor, weight: Optional[torch.Tensor]=None, eps: float=1e-05) -> torch.Tensor:
|
| 29 |
output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps)
|
| 30 |
if weight is not None:
|
| 31 |
return output * weight
|
|
|
|
| 33 |
|
| 34 |
class RMSNorm(torch.nn.Module):
|
| 35 |
|
| 36 |
+
def __init__(self, normalized_shape: Union[int, List[int], torch.Size], eps: float=1e-05, weight: bool=True, dtype: Optional[torch.dtype]=None, device: Optional[torch.device]=None):
|
| 37 |
super().__init__()
|
| 38 |
self.eps = eps
|
| 39 |
if weight:
|
|
|
|
| 41 |
else:
|
| 42 |
self.register_parameter('weight', None)
|
| 43 |
|
| 44 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 45 |
return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype)
|
| 46 |
|
| 47 |
class LPRMSNorm(RMSNorm):
|
| 48 |
|
| 49 |
+
def __init__(self, normalized_shape: Union[int, List[int], torch.Size], eps: float=1e-05, weight: bool=True, dtype: Optional[torch.dtype]=None, device: Optional[torch.device]=None):
|
| 50 |
super().__init__(normalized_shape=normalized_shape, eps=eps, weight=weight, dtype=dtype, device=device)
|
| 51 |
|
| 52 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 53 |
downcast_x = _cast_if_autocast_enabled(x)
|
| 54 |
downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
|
| 55 |
with torch.autocast(enabled=False, device_type=x.device.type):
|
| 56 |
return rms_norm(downcast_x, downcast_weight, self.eps).to(dtype=x.dtype)
|
| 57 |
+
NORM_CLASS_REGISTRY: Dict[str, Type[torch.nn.Module]] = {'layernorm': torch.nn.LayerNorm, 'low_precision_layernorm': LPLayerNorm, 'rmsnorm': RMSNorm, 'low_precision_rmsnorm': LPRMSNorm}
|