--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: SST-2-FULL_FT-seed20 results: [] --- # SST-2-FULL_FT-seed20 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2716 - Accuracy: 0.9450 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:-----:|:---------------:|:--------:| | 0.4018 | 0.0950 | 200 | 0.2495 | 0.9106 | | 0.2966 | 0.1900 | 400 | 0.2164 | 0.9232 | | 0.2766 | 0.2850 | 600 | 0.2299 | 0.9186 | | 0.2381 | 0.3800 | 800 | 0.2115 | 0.9312 | | 0.2268 | 0.4751 | 1000 | 0.2481 | 0.9186 | | 0.2281 | 0.5701 | 1200 | 0.2841 | 0.9220 | | 0.2133 | 0.6651 | 1400 | 0.2135 | 0.9300 | | 0.2094 | 0.7601 | 1600 | 0.2200 | 0.9289 | | 0.2083 | 0.8551 | 1800 | 0.1958 | 0.9381 | | 0.1899 | 0.9501 | 2000 | 0.2282 | 0.9278 | | 0.1811 | 1.0451 | 2200 | 0.2251 | 0.9255 | | 0.1462 | 1.1401 | 2400 | 0.2134 | 0.9220 | | 0.1543 | 1.2352 | 2600 | 0.2590 | 0.9243 | | 0.1451 | 1.3302 | 2800 | 0.2907 | 0.9197 | | 0.1481 | 1.4252 | 3000 | 0.2570 | 0.9220 | | 0.1382 | 1.5202 | 3200 | 0.3125 | 0.9243 | | 0.1543 | 1.6152 | 3400 | 0.2263 | 0.9312 | | 0.1427 | 1.7102 | 3600 | 0.2303 | 0.9312 | | 0.1412 | 1.8052 | 3800 | 0.2113 | 0.9404 | | 0.1623 | 1.9002 | 4000 | 0.2011 | 0.9358 | | 0.1411 | 1.9952 | 4200 | 0.2147 | 0.9335 | | 0.1122 | 2.0903 | 4400 | 0.2686 | 0.9358 | | 0.1047 | 2.1853 | 4600 | 0.2368 | 0.9346 | | 0.1067 | 2.2803 | 4800 | 0.2754 | 0.9323 | | 0.1138 | 2.3753 | 5000 | 0.2170 | 0.9358 | | 0.1079 | 2.4703 | 5200 | 0.2897 | 0.9220 | | 0.1039 | 2.5653 | 5400 | 0.2880 | 0.9255 | | 0.1217 | 2.6603 | 5600 | 0.2261 | 0.9346 | | 0.0957 | 2.7553 | 5800 | 0.2597 | 0.9358 | | 0.1075 | 2.8504 | 6000 | 0.2263 | 0.9358 | | 0.0994 | 2.9454 | 6200 | 0.2328 | 0.9415 | | 0.0969 | 3.0404 | 6400 | 0.2429 | 0.9358 | | 0.0809 | 3.1354 | 6600 | 0.2401 | 0.9427 | | 0.0815 | 3.2304 | 6800 | 0.2416 | 0.9438 | | 0.0836 | 3.3254 | 7000 | 0.2341 | 0.9438 | | 0.078 | 3.4204 | 7200 | 0.2346 | 0.9438 | | 0.0783 | 3.5154 | 7400 | 0.2831 | 0.9415 | | 0.0797 | 3.6105 | 7600 | 0.2649 | 0.9358 | | 0.0838 | 3.7055 | 7800 | 0.2499 | 0.9415 | | 0.0792 | 3.8005 | 8000 | 0.3017 | 0.9358 | | 0.0769 | 3.8955 | 8200 | 0.2704 | 0.9404 | | 0.0838 | 3.9905 | 8400 | 0.2652 | 0.9369 | | 0.056 | 4.0855 | 8600 | 0.3180 | 0.9323 | | 0.0504 | 4.1805 | 8800 | 0.3403 | 0.9358 | | 0.0607 | 4.2755 | 9000 | 0.3380 | 0.9312 | | 0.0688 | 4.3705 | 9200 | 0.2830 | 0.9404 | | 0.0608 | 4.4656 | 9400 | 0.2693 | 0.9438 | | 0.0559 | 4.5606 | 9600 | 0.2850 | 0.9346 | | 0.0603 | 4.6556 | 9800 | 0.2716 | 0.9450 | | 0.0588 | 4.7506 | 10000 | 0.2574 | 0.9438 | | 0.0598 | 4.8456 | 10200 | 0.2678 | 0.9415 | | 0.062 | 4.9406 | 10400 | 0.2675 | 0.9427 | ### Framework versions - Transformers 4.54.1 - Pytorch 2.5.1+cu121 - Datasets 4.0.0 - Tokenizers 0.21.4