--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlnet-base-cased_fold_1_binary results: [] --- # xlnet-base-cased_fold_1_binary This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7607 - F1: 0.7778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 288 | 0.4111 | 0.7555 | | 0.4387 | 2.0 | 576 | 0.4075 | 0.7540 | | 0.4387 | 3.0 | 864 | 0.5344 | 0.7567 | | 0.2471 | 4.0 | 1152 | 0.7405 | 0.7597 | | 0.2471 | 5.0 | 1440 | 1.0564 | 0.7508 | | 0.1419 | 6.0 | 1728 | 1.0703 | 0.7751 | | 0.0845 | 7.0 | 2016 | 1.0866 | 0.7609 | | 0.0845 | 8.0 | 2304 | 1.2135 | 0.7751 | | 0.05 | 9.0 | 2592 | 1.3649 | 0.7516 | | 0.05 | 10.0 | 2880 | 1.4943 | 0.7590 | | 0.0267 | 11.0 | 3168 | 1.5174 | 0.7412 | | 0.0267 | 12.0 | 3456 | 1.4884 | 0.7559 | | 0.0278 | 13.0 | 3744 | 1.5109 | 0.7405 | | 0.0201 | 14.0 | 4032 | 1.7251 | 0.7409 | | 0.0201 | 15.0 | 4320 | 1.5833 | 0.7354 | | 0.0185 | 16.0 | 4608 | 1.7744 | 0.7598 | | 0.0185 | 17.0 | 4896 | 1.8283 | 0.7619 | | 0.0066 | 18.0 | 5184 | 1.7607 | 0.7778 | | 0.0066 | 19.0 | 5472 | 1.7503 | 0.7719 | | 0.0078 | 20.0 | 5760 | 1.7807 | 0.7508 | | 0.006 | 21.0 | 6048 | 1.6887 | 0.7629 | | 0.006 | 22.0 | 6336 | 1.7041 | 0.7678 | | 0.0074 | 23.0 | 6624 | 1.7337 | 0.7633 | | 0.0074 | 24.0 | 6912 | 1.7548 | 0.7645 | | 0.0035 | 25.0 | 7200 | 1.7685 | 0.7621 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1