Add comprehensive model card for Qwen2.5-14B-Instruct fine-tuned on xLAM
Browse files
README.md
CHANGED
|
@@ -1,199 +1,147 @@
|
|
|
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
library_name: transformers
|
| 3 |
-
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
|
|
|
|
| 10 |
|
|
|
|
| 11 |
|
| 12 |
## Model Details
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
- **
|
| 21 |
-
- **
|
| 22 |
-
- **
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
-
|
| 28 |
-
### Model Sources [optional]
|
| 29 |
-
|
| 30 |
-
<!-- Provide the basic links for the model. -->
|
| 31 |
-
|
| 32 |
-
- **Repository:** [More Information Needed]
|
| 33 |
-
- **Paper [optional]:** [More Information Needed]
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
-
|
| 36 |
-
## Uses
|
| 37 |
-
|
| 38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
-
|
| 40 |
-
### Direct Use
|
| 41 |
-
|
| 42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
-
|
| 44 |
-
[More Information Needed]
|
| 45 |
-
|
| 46 |
-
### Downstream Use [optional]
|
| 47 |
-
|
| 48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
-
|
| 50 |
-
[More Information Needed]
|
| 51 |
-
|
| 52 |
-
### Out-of-Scope Use
|
| 53 |
-
|
| 54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
-
|
| 56 |
-
[More Information Needed]
|
| 57 |
-
|
| 58 |
-
## Bias, Risks, and Limitations
|
| 59 |
-
|
| 60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
-
|
| 62 |
-
[More Information Needed]
|
| 63 |
-
|
| 64 |
-
### Recommendations
|
| 65 |
-
|
| 66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
-
|
| 68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
-
|
| 70 |
-
## How to Get Started with the Model
|
| 71 |
-
|
| 72 |
-
Use the code below to get started with the model.
|
| 73 |
-
|
| 74 |
-
[More Information Needed]
|
| 75 |
-
|
| 76 |
-
## Training Details
|
| 77 |
-
|
| 78 |
-
### Training Data
|
| 79 |
-
|
| 80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
-
|
| 82 |
-
[More Information Needed]
|
| 83 |
-
|
| 84 |
-
### Training Procedure
|
| 85 |
-
|
| 86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
-
|
| 88 |
-
#### Preprocessing [optional]
|
| 89 |
-
|
| 90 |
-
[More Information Needed]
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#### Training Hyperparameters
|
| 94 |
-
|
| 95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
-
|
| 97 |
-
#### Speeds, Sizes, Times [optional]
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
-
|
| 103 |
-
## Evaluation
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
|
| 187 |
-
[More Information Needed]
|
| 188 |
|
| 189 |
-
##
|
| 190 |
|
| 191 |
-
|
| 192 |
|
| 193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
-
|
| 196 |
|
| 197 |
-
|
| 198 |
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
---
|
| 3 |
+
license: cc-by-nc-4.0
|
| 4 |
+
tags:
|
| 5 |
+
- text-generation
|
| 6 |
+
- qwen2.5-14b-instruct
|
| 7 |
+
- function-calling
|
| 8 |
+
- finetuned-model
|
| 9 |
+
- trl
|
| 10 |
+
- lora
|
| 11 |
+
- Salesforce/xlam-function-calling-60k
|
| 12 |
+
datasets:
|
| 13 |
+
- Salesforce/xlam-function-calling-60k
|
| 14 |
+
base_model: Qwen/Qwen2.5-14B-Instruct
|
| 15 |
library_name: transformers
|
| 16 |
+
languages:
|
| 17 |
+
- en
|
| 18 |
+
pipeline_tag: text-generation
|
| 19 |
---
|
| 20 |
|
| 21 |
+
# Qwen2.5-14B-Instruct Fine-tuned on xLAM
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
## Overview
|
| 24 |
|
| 25 |
+
This is a fine-tuned version of the Qwen2.5-14B-Instruct model. The model was trained using Hugging Face's TRL library on the xLAM dataset for function calling capabilities.
|
| 26 |
|
| 27 |
## Model Details
|
| 28 |
|
| 29 |
+
- **Developed by:** ermiaazarkhalili
|
| 30 |
+
- **License:** cc-by-nc-4.0
|
| 31 |
+
- **languages:** en
|
| 32 |
+
- **Finetuned from model:** Qwen/Qwen2.5-14B-Instruct
|
| 33 |
+
- **Model size:** Qwen2.5-14B-Instruct parameters
|
| 34 |
+
- **Vocab size:** 152,064 tokens
|
| 35 |
+
- **Max sequence length:** 2,048 tokens
|
| 36 |
+
- **Tensor type:** BF16
|
| 37 |
+
- **Pad token:** `<|im_end|>` (ID: 151645)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
|
|
|
| 39 |
|
| 40 |
+
## Training Information
|
| 41 |
|
| 42 |
+
The model was fine-tuned using the following configuration:
|
| 43 |
|
| 44 |
+
### Training Libraries
|
| 45 |
+
- **Hugging Face TRL Library** for advanced training techniques
|
| 46 |
+
- **LoRA (Low-Rank Adaptation)** for parameter-efficient training
|
| 47 |
+
- **4-bit quantization** for memory efficiency
|
| 48 |
+
|
| 49 |
+
### Training Parameters
|
| 50 |
+
- **Learning Rate:** 0.0001
|
| 51 |
+
- **Batch Size:** 4
|
| 52 |
+
- **Gradient Accumulation Steps:** 8
|
| 53 |
+
- **Max Training Steps:** 1,000
|
| 54 |
+
- **Warmup Ratio:** 0.1
|
| 55 |
+
- **Max Sequence Length:** 2,048
|
| 56 |
+
- **Output Directory:** ./Qwen2_5_14B_Instruct_xLAM
|
| 57 |
+
|
| 58 |
+
### LoRA Configuration
|
| 59 |
+
- **LoRA Rank (r):** 16
|
| 60 |
+
- **LoRA Alpha:** 32
|
| 61 |
+
- **Target Modules:** Query and Value projections
|
| 62 |
+
- **LoRA Dropout:** 0.1
|
| 63 |
+
|
| 64 |
+
## Usage
|
| 65 |
+
|
| 66 |
+
```python
|
| 67 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 68 |
+
import torch
|
| 69 |
+
|
| 70 |
+
# Load model and tokenizer
|
| 71 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 72 |
+
"ermiaazarkhalili/Qwen2.5-14B-Instruct_Function_Calling_xLAM",
|
| 73 |
+
torch_dtype=torch.bfloat16,
|
| 74 |
+
device_map="auto",
|
| 75 |
+
trust_remote_code=True
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 79 |
+
"ermiaazarkhalili/Qwen2.5-14B-Instruct_Function_Calling_xLAM",
|
| 80 |
+
trust_remote_code=True
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
text= "<user>Check if the numbers 8 and 1233 are powers of two.</user>\n\n<tools>"
|
| 84 |
+
|
| 85 |
+
# Tokenize and generate
|
| 86 |
+
inputs = tokenizer(text, return_tensors="pt").to(model.device)
|
| 87 |
+
|
| 88 |
+
outputs = model.generate(
|
| 89 |
+
**inputs,
|
| 90 |
+
max_new_tokens=512,
|
| 91 |
+
temperature=0.7,
|
| 92 |
+
do_sample=True,
|
| 93 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 94 |
+
eos_token_id=tokenizer.eos_token_id
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
# Decode response
|
| 98 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 99 |
+
generated_text = response[len(text):].strip()
|
| 100 |
+
print(generated_text)
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
## Dataset
|
| 104 |
+
|
| 105 |
+
The model was trained on the **xLAM** dataset.
|
| 106 |
+
|
| 107 |
+
## Model Performance
|
| 108 |
+
|
| 109 |
+
This fine-tuned model demonstrates improved capabilities in:
|
| 110 |
+
- **Function Detection:** Identifying when to call functions
|
| 111 |
+
- **Parameter Extraction:** Extracting correct parameters from user queries
|
| 112 |
+
- **Output Formatting:** Generating properly structured function calls
|
| 113 |
+
- **Tool Integration:** Working with external APIs and tools
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
## Credits
|
| 117 |
+
|
| 118 |
+
This model was developed by [ermiaazarkhalili](https://huggingface.co/ermiaazarkhalili) and leverages the capabilities of:
|
| 119 |
+
- **Qwen2.5-14B-Instruct** base model
|
| 120 |
+
- **Hugging Face TRL** for advanced fine-tuning techniques
|
| 121 |
+
- **LoRA** for parameter-efficient adaptation
|
| 122 |
+
|
| 123 |
+
## Contact
|
| 124 |
+
|
| 125 |
+
For any inquiries or support, please reach out to the developer at [ermiaazarkhalili](https://huggingface.co/ermiaazarkhalili).
|
| 126 |
+
|
| 127 |
+
## Acknowledgments
|
| 128 |
+
|
| 129 |
+
We would like to thank the creators of:
|
| 130 |
+
- **Qwen2.5-14B-Instruct** for the excellent base model
|
| 131 |
+
- **Hugging Face** for the TRL library and infrastructure
|
| 132 |
+
- **xLAM** dataset contributors
|
| 133 |
+
- **LoRA** researchers for parameter-efficient fine-tuning methods
|
| 134 |
|
| 135 |
+
## Citation
|
| 136 |
|
| 137 |
+
If you use this model, please cite:
|
| 138 |
|
| 139 |
+
```bibtex
|
| 140 |
+
@misc{ermiaazarkhalili_Qwen2.5-14B-Instruct_Function_Calling_xLAM,
|
| 141 |
+
author = {ermiaazarkhalili},
|
| 142 |
+
title = { Fine-tuning Qwen2.5-14B-Instruct on xLAM for Function Calling},
|
| 143 |
+
year = {2025},
|
| 144 |
+
publisher = {Hugging Face},
|
| 145 |
+
howpublished = {\url{https://huggingface.co/ermiaazarkhalili/Qwen2.5-14B-Instruct_Function_Calling_xLAM}}
|
| 146 |
+
}
|
| 147 |
+
```
|