--- language: - en license: apache-2.0 tags: - brahma-kumaris - murli - spiritual - lora - phi-2 base_model: microsoft/phi-2 datasets: - custom library_name: peft --- # Murli Assistant - Fine-tuned Phi-2 with LoRA This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) using LoRA (Low-Rank Adaptation) on Brahma Kumaris Murli data. ## Model Description - **Base Model:** microsoft/phi-2 (2.7B parameters) - **Fine-tuning Method:** LoRA (r=8, alpha=16) - **Training Data:** 100+ daily murlis from MongoDB database - **Use Case:** Spiritual guidance and murli knowledge assistant ## Training Details - **LoRA Rank (r):** 8 - **LoRA Alpha:** 16 - **Target Modules:** q_proj, o_proj, k_proj, v_proj - **Training Examples:** 201 formatted instructions - **Adapter Size:** ~15MB ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel import torch # Load base model base_model = AutoModelForCausalLM.from_pretrained( "microsoft/phi-2", torch_dtype=torch.float16, device_map="auto", trust_remote_code=True ) # Load LoRA adapter model = PeftModel.from_pretrained(base_model, "eswarankrishnamurthy/murli-assistant-phi2-lora") tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2") tokenizer.pad_token = tokenizer.eos_token # Generate response question = "What is the essence of today's murli?" prompt = f"### Instruction:\n{question}\n\n### Response:\n" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=200) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ## Inference API This model is also available via Hugging Face Inference API: ```python import requests API_URL = "https://api-inference.huggingface.co/models/eswarankrishnamurthy/murli-assistant-phi2-lora" headers = {"Authorization": f"Bearer {YOUR_HF_TOKEN}"} def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.json() output = query({"inputs": "What is soul consciousness?"}) print(output) ``` ## Training Information The model was trained on diverse murli content including: - Daily murli essence - Blessings and slogans - Questions and answers - Spiritual teachings and guidance ## Limitations - Best performance on spiritual/murli-related queries - May require GPU for faster inference - CPU inference is possible but slower ## Citation If you use this model, please cite: ``` @misc{murli-assistant-phi2, author = {eswarankrishnamurthy}, title = {Murli Assistant - Fine-tuned Phi-2}, year = {2025}, publisher = {Hugging Face}, url = {https://huggingface.co/eswarankrishnamurthy/murli-assistant-phi2-lora} } ``` ## Contact For questions or feedback, please open an issue on the model repository.