Push model using huggingface_hub.
Browse files- .gitattributes +2 -0
- 1_Pooling/config.json +10 -0
- README.md +784 -0
- config.json +25 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +65 -0
- unigram.json +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
unigram.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 384,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,784 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- setfit
|
| 4 |
+
- sentence-transformers
|
| 5 |
+
- text-classification
|
| 6 |
+
- generated_from_setfit_trainer
|
| 7 |
+
widget:
|
| 8 |
+
- text: This expenditure has financed projects in road works, energy, agriculture
|
| 9 |
+
and water. Madam Speaker, priority allocations are being made to power generation,
|
| 10 |
+
road networks, irrigation schemes, schools and improvement of health infrastructure.
|
| 11 |
+
Addressing constraints in transport, energy and health and education and improving
|
| 12 |
+
service delivery, will accord Ugandans a better quality of life.
|
| 13 |
+
- text: interoperability, acceptance) that are not exclusively related to G2P programs
|
| 14 |
+
and that need to be addressed to realize digital payments’ benefits. Unemployment
|
| 15 |
+
benefits Social security contributions Labor Markets Activation measures Labor
|
| 16 |
+
market regulations Reduced work time Wage subsidies 418 (back to the top) Sudan
|
| 17 |
+
Social Assistance Cash-based transfers Cash transfers (conditional and unconditional)
|
| 18 |
+
One-off cash transfers Childcare support Social pensions In-kind transfers Food,
|
| 19 |
+
vouchers, others • The ministry of labor and social development will provide in
|
| 20 |
+
kind support to poor households, informal workers, teachers, and casual workers
|
| 21 |
+
(total 2,050,000 households). A total of 100,000 Bahraini will benefit from the
|
| 22 |
+
measure (cost of BD 215 million)54 55 Social security contributions Labor Markets
|
| 23 |
+
Activation measures Labor market regulations Reduced work time Wage subsidies
|
| 24 |
+
54 https://www.moh.gov.bh/COVID19/Details/3969 55 https://www.moh.gov.bh/COVID19/Details/3982
|
| 25 |
+
70 (back to the top) Bangladesh Social Assistance Cash-based transfers Cash transfers
|
| 26 |
+
(conditional and unconditional) • Benefit under key safety net programs will be
|
| 27 |
+
increased (amount not determined yet).
|
| 28 |
+
- text: National Food and Nutrition Strategic Plan 2011-2015 55 7) Promote practices
|
| 29 |
+
that enhance sustainable availability, accessibility and consumption of a variety
|
| 30 |
+
of foods at household level. National Food and Nutrition Strategic Plan 2011-2015
|
| 31 |
+
54 5.11 Strategic Direction 11 Expanding and Developing Communication and Advocacy
|
| 32 |
+
Support for Food and Nutrition Interventions at Various Levels. National Food
|
| 33 |
+
and Nutrition Strategic Plan 2011-2015 18 3.
|
| 34 |
+
- text: 13 (Deroga delle norme in materia di riconoscimento delle qualifiche professionali
|
| 35 |
+
sanitarie) 1. 93 (Disposizioni in materia di autoservizi pubblici non di linea)
|
| 36 |
+
1. 4 (Disciplina delle aree sanitarie temporanee) 1.
|
| 37 |
+
- text: Furthermore, there is a need for improvements in forecasting, distribution
|
| 38 |
+
and funding of micronutrient commodities, as well as the provision of adequate
|
| 39 |
+
resources to ensure universal coverage. The National Nutrition Program is also
|
| 40 |
+
responsible for estimating the demand of nutrition commodities, such as vitamin
|
| 41 |
+
A capsules, iron/folic acid tablets, and Mebedazole for deworming. It is therefore
|
| 42 |
+
limited in scope to address the full spectrum of causes of undernutrition, which
|
| 43 |
+
requires a broad coalition of multisectoral interventions.
|
| 44 |
+
metrics:
|
| 45 |
+
- accuracy
|
| 46 |
+
pipeline_tag: text-classification
|
| 47 |
+
library_name: setfit
|
| 48 |
+
inference: false
|
| 49 |
+
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
| 50 |
+
---
|
| 51 |
+
|
| 52 |
+
# SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
| 53 |
+
|
| 54 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
|
| 55 |
+
|
| 56 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
| 57 |
+
|
| 58 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
| 59 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
| 60 |
+
|
| 61 |
+
## Model Details
|
| 62 |
+
|
| 63 |
+
### Model Description
|
| 64 |
+
- **Model Type:** SetFit
|
| 65 |
+
- **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
|
| 66 |
+
- **Classification head:** a OneVsRestClassifier instance
|
| 67 |
+
- **Maximum Sequence Length:** 128 tokens
|
| 68 |
+
<!-- - **Number of Classes:** Unknown -->
|
| 69 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
| 70 |
+
<!-- - **Language:** Unknown -->
|
| 71 |
+
<!-- - **License:** Unknown -->
|
| 72 |
+
|
| 73 |
+
### Model Sources
|
| 74 |
+
|
| 75 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
| 76 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
| 77 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
| 78 |
+
|
| 79 |
+
## Uses
|
| 80 |
+
|
| 81 |
+
### Direct Use for Inference
|
| 82 |
+
|
| 83 |
+
First install the SetFit library:
|
| 84 |
+
|
| 85 |
+
```bash
|
| 86 |
+
pip install setfit
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
Then you can load this model and run inference.
|
| 90 |
+
|
| 91 |
+
```python
|
| 92 |
+
from setfit import SetFitModel
|
| 93 |
+
|
| 94 |
+
# Download from the 🤗 Hub
|
| 95 |
+
model = SetFitModel.from_pretrained("faodl/model_g20_multilabel_MiniLM-L12-v2_15_sample")
|
| 96 |
+
# Run inference
|
| 97 |
+
preds = model("13 (Deroga delle norme in materia di riconoscimento delle qualifiche professionali sanitarie) 1. 93 (Disposizioni in materia di autoservizi pubblici non di linea) 1. 4 (Disciplina delle aree sanitarie temporanee) 1.")
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
<!--
|
| 101 |
+
### Downstream Use
|
| 102 |
+
|
| 103 |
+
*List how someone could finetune this model on their own dataset.*
|
| 104 |
+
-->
|
| 105 |
+
|
| 106 |
+
<!--
|
| 107 |
+
### Out-of-Scope Use
|
| 108 |
+
|
| 109 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 110 |
+
-->
|
| 111 |
+
|
| 112 |
+
<!--
|
| 113 |
+
## Bias, Risks and Limitations
|
| 114 |
+
|
| 115 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 116 |
+
-->
|
| 117 |
+
|
| 118 |
+
<!--
|
| 119 |
+
### Recommendations
|
| 120 |
+
|
| 121 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 122 |
+
-->
|
| 123 |
+
|
| 124 |
+
## Training Details
|
| 125 |
+
|
| 126 |
+
### Training Set Metrics
|
| 127 |
+
| Training set | Min | Median | Max |
|
| 128 |
+
|:-------------|:----|:--------|:-----|
|
| 129 |
+
| Word count | 3 | 93.9143 | 1651 |
|
| 130 |
+
|
| 131 |
+
### Training Hyperparameters
|
| 132 |
+
- batch_size: (8, 8)
|
| 133 |
+
- num_epochs: (4, 4)
|
| 134 |
+
- max_steps: -1
|
| 135 |
+
- sampling_strategy: oversampling
|
| 136 |
+
- num_iterations: 20
|
| 137 |
+
- body_learning_rate: (2e-05, 2e-05)
|
| 138 |
+
- head_learning_rate: 2e-05
|
| 139 |
+
- loss: CosineSimilarityLoss
|
| 140 |
+
- distance_metric: cosine_distance
|
| 141 |
+
- margin: 0.25
|
| 142 |
+
- end_to_end: False
|
| 143 |
+
- use_amp: False
|
| 144 |
+
- warmup_proportion: 0.1
|
| 145 |
+
- l2_weight: 0.01
|
| 146 |
+
- seed: 42
|
| 147 |
+
- eval_max_steps: -1
|
| 148 |
+
- load_best_model_at_end: False
|
| 149 |
+
|
| 150 |
+
### Training Results
|
| 151 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
| 152 |
+
|:------:|:-----:|:-------------:|:---------------:|
|
| 153 |
+
| 0.0001 | 1 | 0.2185 | - |
|
| 154 |
+
| 0.0068 | 50 | 0.1579 | - |
|
| 155 |
+
| 0.0136 | 100 | 0.1625 | - |
|
| 156 |
+
| 0.0204 | 150 | 0.1649 | - |
|
| 157 |
+
| 0.0272 | 200 | 0.1511 | - |
|
| 158 |
+
| 0.0340 | 250 | 0.1263 | - |
|
| 159 |
+
| 0.0408 | 300 | 0.1335 | - |
|
| 160 |
+
| 0.0476 | 350 | 0.1276 | - |
|
| 161 |
+
| 0.0544 | 400 | 0.1143 | - |
|
| 162 |
+
| 0.0612 | 450 | 0.1095 | - |
|
| 163 |
+
| 0.0680 | 500 | 0.1029 | - |
|
| 164 |
+
| 0.0748 | 550 | 0.1161 | - |
|
| 165 |
+
| 0.0816 | 600 | 0.114 | - |
|
| 166 |
+
| 0.0884 | 650 | 0.0945 | - |
|
| 167 |
+
| 0.0952 | 700 | 0.0903 | - |
|
| 168 |
+
| 0.1020 | 750 | 0.0793 | - |
|
| 169 |
+
| 0.1088 | 800 | 0.0848 | - |
|
| 170 |
+
| 0.1156 | 850 | 0.0802 | - |
|
| 171 |
+
| 0.1224 | 900 | 0.0819 | - |
|
| 172 |
+
| 0.1293 | 950 | 0.0802 | - |
|
| 173 |
+
| 0.1361 | 1000 | 0.0879 | - |
|
| 174 |
+
| 0.1429 | 1050 | 0.0738 | - |
|
| 175 |
+
| 0.1497 | 1100 | 0.0737 | - |
|
| 176 |
+
| 0.1565 | 1150 | 0.0761 | - |
|
| 177 |
+
| 0.1633 | 1200 | 0.0715 | - |
|
| 178 |
+
| 0.1701 | 1250 | 0.0633 | - |
|
| 179 |
+
| 0.1769 | 1300 | 0.06 | - |
|
| 180 |
+
| 0.1837 | 1350 | 0.06 | - |
|
| 181 |
+
| 0.1905 | 1400 | 0.0641 | - |
|
| 182 |
+
| 0.1973 | 1450 | 0.057 | - |
|
| 183 |
+
| 0.2041 | 1500 | 0.0554 | - |
|
| 184 |
+
| 0.2109 | 1550 | 0.0552 | - |
|
| 185 |
+
| 0.2177 | 1600 | 0.0447 | - |
|
| 186 |
+
| 0.2245 | 1650 | 0.0442 | - |
|
| 187 |
+
| 0.2313 | 1700 | 0.0547 | - |
|
| 188 |
+
| 0.2381 | 1750 | 0.0358 | - |
|
| 189 |
+
| 0.2449 | 1800 | 0.0503 | - |
|
| 190 |
+
| 0.2517 | 1850 | 0.0366 | - |
|
| 191 |
+
| 0.2585 | 1900 | 0.0421 | - |
|
| 192 |
+
| 0.2653 | 1950 | 0.0332 | - |
|
| 193 |
+
| 0.2721 | 2000 | 0.0429 | - |
|
| 194 |
+
| 0.2789 | 2050 | 0.0316 | - |
|
| 195 |
+
| 0.2857 | 2100 | 0.0382 | - |
|
| 196 |
+
| 0.2925 | 2150 | 0.0456 | - |
|
| 197 |
+
| 0.2993 | 2200 | 0.0327 | - |
|
| 198 |
+
| 0.3061 | 2250 | 0.0286 | - |
|
| 199 |
+
| 0.3129 | 2300 | 0.0295 | - |
|
| 200 |
+
| 0.3197 | 2350 | 0.0305 | - |
|
| 201 |
+
| 0.3265 | 2400 | 0.0223 | - |
|
| 202 |
+
| 0.3333 | 2450 | 0.0228 | - |
|
| 203 |
+
| 0.3401 | 2500 | 0.0305 | - |
|
| 204 |
+
| 0.3469 | 2550 | 0.0294 | - |
|
| 205 |
+
| 0.3537 | 2600 | 0.0342 | - |
|
| 206 |
+
| 0.3605 | 2650 | 0.0275 | - |
|
| 207 |
+
| 0.3673 | 2700 | 0.0181 | - |
|
| 208 |
+
| 0.3741 | 2750 | 0.0267 | - |
|
| 209 |
+
| 0.3810 | 2800 | 0.0229 | - |
|
| 210 |
+
| 0.3878 | 2850 | 0.0213 | - |
|
| 211 |
+
| 0.3946 | 2900 | 0.0203 | - |
|
| 212 |
+
| 0.4014 | 2950 | 0.0281 | - |
|
| 213 |
+
| 0.4082 | 3000 | 0.025 | - |
|
| 214 |
+
| 0.4150 | 3050 | 0.0233 | - |
|
| 215 |
+
| 0.4218 | 3100 | 0.0306 | - |
|
| 216 |
+
| 0.4286 | 3150 | 0.0159 | - |
|
| 217 |
+
| 0.4354 | 3200 | 0.0246 | - |
|
| 218 |
+
| 0.4422 | 3250 | 0.0266 | - |
|
| 219 |
+
| 0.4490 | 3300 | 0.0242 | - |
|
| 220 |
+
| 0.4558 | 3350 | 0.0103 | - |
|
| 221 |
+
| 0.4626 | 3400 | 0.0191 | - |
|
| 222 |
+
| 0.4694 | 3450 | 0.0237 | - |
|
| 223 |
+
| 0.4762 | 3500 | 0.0216 | - |
|
| 224 |
+
| 0.4830 | 3550 | 0.0103 | - |
|
| 225 |
+
| 0.4898 | 3600 | 0.0097 | - |
|
| 226 |
+
| 0.4966 | 3650 | 0.0158 | - |
|
| 227 |
+
| 0.5034 | 3700 | 0.0156 | - |
|
| 228 |
+
| 0.5102 | 3750 | 0.0152 | - |
|
| 229 |
+
| 0.5170 | 3800 | 0.0187 | - |
|
| 230 |
+
| 0.5238 | 3850 | 0.0129 | - |
|
| 231 |
+
| 0.5306 | 3900 | 0.0157 | - |
|
| 232 |
+
| 0.5374 | 3950 | 0.0161 | - |
|
| 233 |
+
| 0.5442 | 4000 | 0.0131 | - |
|
| 234 |
+
| 0.5510 | 4050 | 0.0119 | - |
|
| 235 |
+
| 0.5578 | 4100 | 0.0213 | - |
|
| 236 |
+
| 0.5646 | 4150 | 0.0086 | - |
|
| 237 |
+
| 0.5714 | 4200 | 0.0086 | - |
|
| 238 |
+
| 0.5782 | 4250 | 0.0121 | - |
|
| 239 |
+
| 0.5850 | 4300 | 0.0168 | - |
|
| 240 |
+
| 0.5918 | 4350 | 0.0147 | - |
|
| 241 |
+
| 0.5986 | 4400 | 0.019 | - |
|
| 242 |
+
| 0.6054 | 4450 | 0.0151 | - |
|
| 243 |
+
| 0.6122 | 4500 | 0.0298 | - |
|
| 244 |
+
| 0.6190 | 4550 | 0.0187 | - |
|
| 245 |
+
| 0.6259 | 4600 | 0.013 | - |
|
| 246 |
+
| 0.6327 | 4650 | 0.0184 | - |
|
| 247 |
+
| 0.6395 | 4700 | 0.0249 | - |
|
| 248 |
+
| 0.6463 | 4750 | 0.0157 | - |
|
| 249 |
+
| 0.6531 | 4800 | 0.0081 | - |
|
| 250 |
+
| 0.6599 | 4850 | 0.0229 | - |
|
| 251 |
+
| 0.6667 | 4900 | 0.0227 | - |
|
| 252 |
+
| 0.6735 | 4950 | 0.0166 | - |
|
| 253 |
+
| 0.6803 | 5000 | 0.0222 | - |
|
| 254 |
+
| 0.6871 | 5050 | 0.0066 | - |
|
| 255 |
+
| 0.6939 | 5100 | 0.0135 | - |
|
| 256 |
+
| 0.7007 | 5150 | 0.0134 | - |
|
| 257 |
+
| 0.7075 | 5200 | 0.0134 | - |
|
| 258 |
+
| 0.7143 | 5250 | 0.0077 | - |
|
| 259 |
+
| 0.7211 | 5300 | 0.0106 | - |
|
| 260 |
+
| 0.7279 | 5350 | 0.0086 | - |
|
| 261 |
+
| 0.7347 | 5400 | 0.0169 | - |
|
| 262 |
+
| 0.7415 | 5450 | 0.0123 | - |
|
| 263 |
+
| 0.7483 | 5500 | 0.0085 | - |
|
| 264 |
+
| 0.7551 | 5550 | 0.0087 | - |
|
| 265 |
+
| 0.7619 | 5600 | 0.0143 | - |
|
| 266 |
+
| 0.7687 | 5650 | 0.0112 | - |
|
| 267 |
+
| 0.7755 | 5700 | 0.0185 | - |
|
| 268 |
+
| 0.7823 | 5750 | 0.0064 | - |
|
| 269 |
+
| 0.7891 | 5800 | 0.0077 | - |
|
| 270 |
+
| 0.7959 | 5850 | 0.0116 | - |
|
| 271 |
+
| 0.8027 | 5900 | 0.0063 | - |
|
| 272 |
+
| 0.8095 | 5950 | 0.0166 | - |
|
| 273 |
+
| 0.8163 | 6000 | 0.01 | - |
|
| 274 |
+
| 0.8231 | 6050 | 0.0088 | - |
|
| 275 |
+
| 0.8299 | 6100 | 0.0121 | - |
|
| 276 |
+
| 0.8367 | 6150 | 0.0214 | - |
|
| 277 |
+
| 0.8435 | 6200 | 0.009 | - |
|
| 278 |
+
| 0.8503 | 6250 | 0.0133 | - |
|
| 279 |
+
| 0.8571 | 6300 | 0.0062 | - |
|
| 280 |
+
| 0.8639 | 6350 | 0.0077 | - |
|
| 281 |
+
| 0.8707 | 6400 | 0.0201 | - |
|
| 282 |
+
| 0.8776 | 6450 | 0.0163 | - |
|
| 283 |
+
| 0.8844 | 6500 | 0.0071 | - |
|
| 284 |
+
| 0.8912 | 6550 | 0.0138 | - |
|
| 285 |
+
| 0.8980 | 6600 | 0.0131 | - |
|
| 286 |
+
| 0.9048 | 6650 | 0.0126 | - |
|
| 287 |
+
| 0.9116 | 6700 | 0.0042 | - |
|
| 288 |
+
| 0.9184 | 6750 | 0.0152 | - |
|
| 289 |
+
| 0.9252 | 6800 | 0.0194 | - |
|
| 290 |
+
| 0.9320 | 6850 | 0.0068 | - |
|
| 291 |
+
| 0.9388 | 6900 | 0.0154 | - |
|
| 292 |
+
| 0.9456 | 6950 | 0.0077 | - |
|
| 293 |
+
| 0.9524 | 7000 | 0.009 | - |
|
| 294 |
+
| 0.9592 | 7050 | 0.0053 | - |
|
| 295 |
+
| 0.9660 | 7100 | 0.0128 | - |
|
| 296 |
+
| 0.9728 | 7150 | 0.011 | - |
|
| 297 |
+
| 0.9796 | 7200 | 0.0039 | - |
|
| 298 |
+
| 0.9864 | 7250 | 0.0076 | - |
|
| 299 |
+
| 0.9932 | 7300 | 0.018 | - |
|
| 300 |
+
| 1.0 | 7350 | 0.0215 | - |
|
| 301 |
+
| 1.0068 | 7400 | 0.0022 | - |
|
| 302 |
+
| 1.0136 | 7450 | 0.01 | - |
|
| 303 |
+
| 1.0204 | 7500 | 0.0061 | - |
|
| 304 |
+
| 1.0272 | 7550 | 0.0039 | - |
|
| 305 |
+
| 1.0340 | 7600 | 0.0052 | - |
|
| 306 |
+
| 1.0408 | 7650 | 0.0053 | - |
|
| 307 |
+
| 1.0476 | 7700 | 0.0093 | - |
|
| 308 |
+
| 1.0544 | 7750 | 0.0099 | - |
|
| 309 |
+
| 1.0612 | 7800 | 0.0076 | - |
|
| 310 |
+
| 1.0680 | 7850 | 0.0094 | - |
|
| 311 |
+
| 1.0748 | 7900 | 0.0065 | - |
|
| 312 |
+
| 1.0816 | 7950 | 0.0083 | - |
|
| 313 |
+
| 1.0884 | 8000 | 0.007 | - |
|
| 314 |
+
| 1.0952 | 8050 | 0.0056 | - |
|
| 315 |
+
| 1.1020 | 8100 | 0.0112 | - |
|
| 316 |
+
| 1.1088 | 8150 | 0.0087 | - |
|
| 317 |
+
| 1.1156 | 8200 | 0.0055 | - |
|
| 318 |
+
| 1.1224 | 8250 | 0.0051 | - |
|
| 319 |
+
| 1.1293 | 8300 | 0.0096 | - |
|
| 320 |
+
| 1.1361 | 8350 | 0.0038 | - |
|
| 321 |
+
| 1.1429 | 8400 | 0.0055 | - |
|
| 322 |
+
| 1.1497 | 8450 | 0.0051 | - |
|
| 323 |
+
| 1.1565 | 8500 | 0.01 | - |
|
| 324 |
+
| 1.1633 | 8550 | 0.0058 | - |
|
| 325 |
+
| 1.1701 | 8600 | 0.0112 | - |
|
| 326 |
+
| 1.1769 | 8650 | 0.003 | - |
|
| 327 |
+
| 1.1837 | 8700 | 0.0094 | - |
|
| 328 |
+
| 1.1905 | 8750 | 0.0069 | - |
|
| 329 |
+
| 1.1973 | 8800 | 0.0131 | - |
|
| 330 |
+
| 1.2041 | 8850 | 0.0089 | - |
|
| 331 |
+
| 1.2109 | 8900 | 0.0061 | - |
|
| 332 |
+
| 1.2177 | 8950 | 0.0109 | - |
|
| 333 |
+
| 1.2245 | 9000 | 0.008 | - |
|
| 334 |
+
| 1.2313 | 9050 | 0.0122 | - |
|
| 335 |
+
| 1.2381 | 9100 | 0.0081 | - |
|
| 336 |
+
| 1.2449 | 9150 | 0.0014 | - |
|
| 337 |
+
| 1.2517 | 9200 | 0.0046 | - |
|
| 338 |
+
| 1.2585 | 9250 | 0.0049 | - |
|
| 339 |
+
| 1.2653 | 9300 | 0.0147 | - |
|
| 340 |
+
| 1.2721 | 9350 | 0.0105 | - |
|
| 341 |
+
| 1.2789 | 9400 | 0.0126 | - |
|
| 342 |
+
| 1.2857 | 9450 | 0.0031 | - |
|
| 343 |
+
| 1.2925 | 9500 | 0.0039 | - |
|
| 344 |
+
| 1.2993 | 9550 | 0.0038 | - |
|
| 345 |
+
| 1.3061 | 9600 | 0.0047 | - |
|
| 346 |
+
| 1.3129 | 9650 | 0.0037 | - |
|
| 347 |
+
| 1.3197 | 9700 | 0.0103 | - |
|
| 348 |
+
| 1.3265 | 9750 | 0.0007 | - |
|
| 349 |
+
| 1.3333 | 9800 | 0.0053 | - |
|
| 350 |
+
| 1.3401 | 9850 | 0.0018 | - |
|
| 351 |
+
| 1.3469 | 9900 | 0.0057 | - |
|
| 352 |
+
| 1.3537 | 9950 | 0.0044 | - |
|
| 353 |
+
| 1.3605 | 10000 | 0.0109 | - |
|
| 354 |
+
| 1.3673 | 10050 | 0.0056 | - |
|
| 355 |
+
| 1.3741 | 10100 | 0.0081 | - |
|
| 356 |
+
| 1.3810 | 10150 | 0.008 | - |
|
| 357 |
+
| 1.3878 | 10200 | 0.0081 | - |
|
| 358 |
+
| 1.3946 | 10250 | 0.0033 | - |
|
| 359 |
+
| 1.4014 | 10300 | 0.0055 | - |
|
| 360 |
+
| 1.4082 | 10350 | 0.0019 | - |
|
| 361 |
+
| 1.4150 | 10400 | 0.0033 | - |
|
| 362 |
+
| 1.4218 | 10450 | 0.0033 | - |
|
| 363 |
+
| 1.4286 | 10500 | 0.0058 | - |
|
| 364 |
+
| 1.4354 | 10550 | 0.0047 | - |
|
| 365 |
+
| 1.4422 | 10600 | 0.0068 | - |
|
| 366 |
+
| 1.4490 | 10650 | 0.0052 | - |
|
| 367 |
+
| 1.4558 | 10700 | 0.0033 | - |
|
| 368 |
+
| 1.4626 | 10750 | 0.001 | - |
|
| 369 |
+
| 1.4694 | 10800 | 0.0101 | - |
|
| 370 |
+
| 1.4762 | 10850 | 0.0011 | - |
|
| 371 |
+
| 1.4830 | 10900 | 0.008 | - |
|
| 372 |
+
| 1.4898 | 10950 | 0.0038 | - |
|
| 373 |
+
| 1.4966 | 11000 | 0.0033 | - |
|
| 374 |
+
| 1.5034 | 11050 | 0.0031 | - |
|
| 375 |
+
| 1.5102 | 11100 | 0.0107 | - |
|
| 376 |
+
| 1.5170 | 11150 | 0.004 | - |
|
| 377 |
+
| 1.5238 | 11200 | 0.0009 | - |
|
| 378 |
+
| 1.5306 | 11250 | 0.0034 | - |
|
| 379 |
+
| 1.5374 | 11300 | 0.0033 | - |
|
| 380 |
+
| 1.5442 | 11350 | 0.0011 | - |
|
| 381 |
+
| 1.5510 | 11400 | 0.0081 | - |
|
| 382 |
+
| 1.5578 | 11450 | 0.0025 | - |
|
| 383 |
+
| 1.5646 | 11500 | 0.0065 | - |
|
| 384 |
+
| 1.5714 | 11550 | 0.0069 | - |
|
| 385 |
+
| 1.5782 | 11600 | 0.0053 | - |
|
| 386 |
+
| 1.5850 | 11650 | 0.0031 | - |
|
| 387 |
+
| 1.5918 | 11700 | 0.0059 | - |
|
| 388 |
+
| 1.5986 | 11750 | 0.006 | - |
|
| 389 |
+
| 1.6054 | 11800 | 0.0007 | - |
|
| 390 |
+
| 1.6122 | 11850 | 0.0027 | - |
|
| 391 |
+
| 1.6190 | 11900 | 0.003 | - |
|
| 392 |
+
| 1.6259 | 11950 | 0.0052 | - |
|
| 393 |
+
| 1.6327 | 12000 | 0.0065 | - |
|
| 394 |
+
| 1.6395 | 12050 | 0.0032 | - |
|
| 395 |
+
| 1.6463 | 12100 | 0.0054 | - |
|
| 396 |
+
| 1.6531 | 12150 | 0.0063 | - |
|
| 397 |
+
| 1.6599 | 12200 | 0.0155 | - |
|
| 398 |
+
| 1.6667 | 12250 | 0.0105 | - |
|
| 399 |
+
| 1.6735 | 12300 | 0.0067 | - |
|
| 400 |
+
| 1.6803 | 12350 | 0.0034 | - |
|
| 401 |
+
| 1.6871 | 12400 | 0.0076 | - |
|
| 402 |
+
| 1.6939 | 12450 | 0.0042 | - |
|
| 403 |
+
| 1.7007 | 12500 | 0.003 | - |
|
| 404 |
+
| 1.7075 | 12550 | 0.0096 | - |
|
| 405 |
+
| 1.7143 | 12600 | 0.0054 | - |
|
| 406 |
+
| 1.7211 | 12650 | 0.005 | - |
|
| 407 |
+
| 1.7279 | 12700 | 0.0039 | - |
|
| 408 |
+
| 1.7347 | 12750 | 0.0061 | - |
|
| 409 |
+
| 1.7415 | 12800 | 0.0027 | - |
|
| 410 |
+
| 1.7483 | 12850 | 0.0033 | - |
|
| 411 |
+
| 1.7551 | 12900 | 0.0028 | - |
|
| 412 |
+
| 1.7619 | 12950 | 0.0038 | - |
|
| 413 |
+
| 1.7687 | 13000 | 0.0083 | - |
|
| 414 |
+
| 1.7755 | 13050 | 0.0074 | - |
|
| 415 |
+
| 1.7823 | 13100 | 0.0015 | - |
|
| 416 |
+
| 1.7891 | 13150 | 0.0037 | - |
|
| 417 |
+
| 1.7959 | 13200 | 0.0041 | - |
|
| 418 |
+
| 1.8027 | 13250 | 0.0007 | - |
|
| 419 |
+
| 1.8095 | 13300 | 0.0046 | - |
|
| 420 |
+
| 1.8163 | 13350 | 0.0007 | - |
|
| 421 |
+
| 1.8231 | 13400 | 0.0019 | - |
|
| 422 |
+
| 1.8299 | 13450 | 0.0051 | - |
|
| 423 |
+
| 1.8367 | 13500 | 0.0007 | - |
|
| 424 |
+
| 1.8435 | 13550 | 0.0013 | - |
|
| 425 |
+
| 1.8503 | 13600 | 0.0045 | - |
|
| 426 |
+
| 1.8571 | 13650 | 0.0006 | - |
|
| 427 |
+
| 1.8639 | 13700 | 0.0028 | - |
|
| 428 |
+
| 1.8707 | 13750 | 0.0028 | - |
|
| 429 |
+
| 1.8776 | 13800 | 0.001 | - |
|
| 430 |
+
| 1.8844 | 13850 | 0.001 | - |
|
| 431 |
+
| 1.8912 | 13900 | 0.0075 | - |
|
| 432 |
+
| 1.8980 | 13950 | 0.0041 | - |
|
| 433 |
+
| 1.9048 | 14000 | 0.0115 | - |
|
| 434 |
+
| 1.9116 | 14050 | 0.0007 | - |
|
| 435 |
+
| 1.9184 | 14100 | 0.0069 | - |
|
| 436 |
+
| 1.9252 | 14150 | 0.0017 | - |
|
| 437 |
+
| 1.9320 | 14200 | 0.005 | - |
|
| 438 |
+
| 1.9388 | 14250 | 0.0028 | - |
|
| 439 |
+
| 1.9456 | 14300 | 0.0029 | - |
|
| 440 |
+
| 1.9524 | 14350 | 0.0052 | - |
|
| 441 |
+
| 1.9592 | 14400 | 0.0023 | - |
|
| 442 |
+
| 1.9660 | 14450 | 0.0046 | - |
|
| 443 |
+
| 1.9728 | 14500 | 0.001 | - |
|
| 444 |
+
| 1.9796 | 14550 | 0.0009 | - |
|
| 445 |
+
| 1.9864 | 14600 | 0.0059 | - |
|
| 446 |
+
| 1.9932 | 14650 | 0.0075 | - |
|
| 447 |
+
| 2.0 | 14700 | 0.003 | - |
|
| 448 |
+
| 2.0068 | 14750 | 0.0088 | - |
|
| 449 |
+
| 2.0136 | 14800 | 0.0073 | - |
|
| 450 |
+
| 2.0204 | 14850 | 0.0023 | - |
|
| 451 |
+
| 2.0272 | 14900 | 0.0104 | - |
|
| 452 |
+
| 2.0340 | 14950 | 0.0024 | - |
|
| 453 |
+
| 2.0408 | 15000 | 0.0059 | - |
|
| 454 |
+
| 2.0476 | 15050 | 0.0041 | - |
|
| 455 |
+
| 2.0544 | 15100 | 0.0079 | - |
|
| 456 |
+
| 2.0612 | 15150 | 0.0011 | - |
|
| 457 |
+
| 2.0680 | 15200 | 0.0038 | - |
|
| 458 |
+
| 2.0748 | 15250 | 0.0009 | - |
|
| 459 |
+
| 2.0816 | 15300 | 0.0057 | - |
|
| 460 |
+
| 2.0884 | 15350 | 0.0025 | - |
|
| 461 |
+
| 2.0952 | 15400 | 0.0033 | - |
|
| 462 |
+
| 2.1020 | 15450 | 0.0093 | - |
|
| 463 |
+
| 2.1088 | 15500 | 0.0006 | - |
|
| 464 |
+
| 2.1156 | 15550 | 0.0024 | - |
|
| 465 |
+
| 2.1224 | 15600 | 0.0044 | - |
|
| 466 |
+
| 2.1293 | 15650 | 0.0069 | - |
|
| 467 |
+
| 2.1361 | 15700 | 0.0051 | - |
|
| 468 |
+
| 2.1429 | 15750 | 0.008 | - |
|
| 469 |
+
| 2.1497 | 15800 | 0.0047 | - |
|
| 470 |
+
| 2.1565 | 15850 | 0.0012 | - |
|
| 471 |
+
| 2.1633 | 15900 | 0.001 | - |
|
| 472 |
+
| 2.1701 | 15950 | 0.0019 | - |
|
| 473 |
+
| 2.1769 | 16000 | 0.0024 | - |
|
| 474 |
+
| 2.1837 | 16050 | 0.0066 | - |
|
| 475 |
+
| 2.1905 | 16100 | 0.0025 | - |
|
| 476 |
+
| 2.1973 | 16150 | 0.0037 | - |
|
| 477 |
+
| 2.2041 | 16200 | 0.0033 | - |
|
| 478 |
+
| 2.2109 | 16250 | 0.0023 | - |
|
| 479 |
+
| 2.2177 | 16300 | 0.0013 | - |
|
| 480 |
+
| 2.2245 | 16350 | 0.0033 | - |
|
| 481 |
+
| 2.2313 | 16400 | 0.0029 | - |
|
| 482 |
+
| 2.2381 | 16450 | 0.0038 | - |
|
| 483 |
+
| 2.2449 | 16500 | 0.0015 | - |
|
| 484 |
+
| 2.2517 | 16550 | 0.0007 | - |
|
| 485 |
+
| 2.2585 | 16600 | 0.0031 | - |
|
| 486 |
+
| 2.2653 | 16650 | 0.0061 | - |
|
| 487 |
+
| 2.2721 | 16700 | 0.0011 | - |
|
| 488 |
+
| 2.2789 | 16750 | 0.0049 | - |
|
| 489 |
+
| 2.2857 | 16800 | 0.0012 | - |
|
| 490 |
+
| 2.2925 | 16850 | 0.0036 | - |
|
| 491 |
+
| 2.2993 | 16900 | 0.004 | - |
|
| 492 |
+
| 2.3061 | 16950 | 0.0005 | - |
|
| 493 |
+
| 2.3129 | 17000 | 0.0019 | - |
|
| 494 |
+
| 2.3197 | 17050 | 0.003 | - |
|
| 495 |
+
| 2.3265 | 17100 | 0.0006 | - |
|
| 496 |
+
| 2.3333 | 17150 | 0.0009 | - |
|
| 497 |
+
| 2.3401 | 17200 | 0.0013 | - |
|
| 498 |
+
| 2.3469 | 17250 | 0.0018 | - |
|
| 499 |
+
| 2.3537 | 17300 | 0.0007 | - |
|
| 500 |
+
| 2.3605 | 17350 | 0.001 | - |
|
| 501 |
+
| 2.3673 | 17400 | 0.0054 | - |
|
| 502 |
+
| 2.3741 | 17450 | 0.0004 | - |
|
| 503 |
+
| 2.3810 | 17500 | 0.0028 | - |
|
| 504 |
+
| 2.3878 | 17550 | 0.0005 | - |
|
| 505 |
+
| 2.3946 | 17600 | 0.0003 | - |
|
| 506 |
+
| 2.4014 | 17650 | 0.0004 | - |
|
| 507 |
+
| 2.4082 | 17700 | 0.0031 | - |
|
| 508 |
+
| 2.4150 | 17750 | 0.0004 | - |
|
| 509 |
+
| 2.4218 | 17800 | 0.0013 | - |
|
| 510 |
+
| 2.4286 | 17850 | 0.0017 | - |
|
| 511 |
+
| 2.4354 | 17900 | 0.0013 | - |
|
| 512 |
+
| 2.4422 | 17950 | 0.0025 | - |
|
| 513 |
+
| 2.4490 | 18000 | 0.0004 | - |
|
| 514 |
+
| 2.4558 | 18050 | 0.0029 | - |
|
| 515 |
+
| 2.4626 | 18100 | 0.0023 | - |
|
| 516 |
+
| 2.4694 | 18150 | 0.0027 | - |
|
| 517 |
+
| 2.4762 | 18200 | 0.0015 | - |
|
| 518 |
+
| 2.4830 | 18250 | 0.0006 | - |
|
| 519 |
+
| 2.4898 | 18300 | 0.0024 | - |
|
| 520 |
+
| 2.4966 | 18350 | 0.0021 | - |
|
| 521 |
+
| 2.5034 | 18400 | 0.0005 | - |
|
| 522 |
+
| 2.5102 | 18450 | 0.0004 | - |
|
| 523 |
+
| 2.5170 | 18500 | 0.0042 | - |
|
| 524 |
+
| 2.5238 | 18550 | 0.0005 | - |
|
| 525 |
+
| 2.5306 | 18600 | 0.0012 | - |
|
| 526 |
+
| 2.5374 | 18650 | 0.005 | - |
|
| 527 |
+
| 2.5442 | 18700 | 0.0032 | - |
|
| 528 |
+
| 2.5510 | 18750 | 0.0079 | - |
|
| 529 |
+
| 2.5578 | 18800 | 0.001 | - |
|
| 530 |
+
| 2.5646 | 18850 | 0.0008 | - |
|
| 531 |
+
| 2.5714 | 18900 | 0.0042 | - |
|
| 532 |
+
| 2.5782 | 18950 | 0.001 | - |
|
| 533 |
+
| 2.5850 | 19000 | 0.001 | - |
|
| 534 |
+
| 2.5918 | 19050 | 0.0009 | - |
|
| 535 |
+
| 2.5986 | 19100 | 0.0003 | - |
|
| 536 |
+
| 2.6054 | 19150 | 0.0003 | - |
|
| 537 |
+
| 2.6122 | 19200 | 0.0003 | - |
|
| 538 |
+
| 2.6190 | 19250 | 0.0035 | - |
|
| 539 |
+
| 2.6259 | 19300 | 0.0006 | - |
|
| 540 |
+
| 2.6327 | 19350 | 0.0035 | - |
|
| 541 |
+
| 2.6395 | 19400 | 0.0003 | - |
|
| 542 |
+
| 2.6463 | 19450 | 0.0021 | - |
|
| 543 |
+
| 2.6531 | 19500 | 0.0005 | - |
|
| 544 |
+
| 2.6599 | 19550 | 0.004 | - |
|
| 545 |
+
| 2.6667 | 19600 | 0.0023 | - |
|
| 546 |
+
| 2.6735 | 19650 | 0.0006 | - |
|
| 547 |
+
| 2.6803 | 19700 | 0.004 | - |
|
| 548 |
+
| 2.6871 | 19750 | 0.0015 | - |
|
| 549 |
+
| 2.6939 | 19800 | 0.0008 | - |
|
| 550 |
+
| 2.7007 | 19850 | 0.0022 | - |
|
| 551 |
+
| 2.7075 | 19900 | 0.001 | - |
|
| 552 |
+
| 2.7143 | 19950 | 0.0007 | - |
|
| 553 |
+
| 2.7211 | 20000 | 0.0013 | - |
|
| 554 |
+
| 2.7279 | 20050 | 0.0004 | - |
|
| 555 |
+
| 2.7347 | 20100 | 0.001 | - |
|
| 556 |
+
| 2.7415 | 20150 | 0.0013 | - |
|
| 557 |
+
| 2.7483 | 20200 | 0.0004 | - |
|
| 558 |
+
| 2.7551 | 20250 | 0.0035 | - |
|
| 559 |
+
| 2.7619 | 20300 | 0.0006 | - |
|
| 560 |
+
| 2.7687 | 20350 | 0.001 | - |
|
| 561 |
+
| 2.7755 | 20400 | 0.0003 | - |
|
| 562 |
+
| 2.7823 | 20450 | 0.0006 | - |
|
| 563 |
+
| 2.7891 | 20500 | 0.0012 | - |
|
| 564 |
+
| 2.7959 | 20550 | 0.0003 | - |
|
| 565 |
+
| 2.8027 | 20600 | 0.0031 | - |
|
| 566 |
+
| 2.8095 | 20650 | 0.0005 | - |
|
| 567 |
+
| 2.8163 | 20700 | 0.0008 | - |
|
| 568 |
+
| 2.8231 | 20750 | 0.0006 | - |
|
| 569 |
+
| 2.8299 | 20800 | 0.0005 | - |
|
| 570 |
+
| 2.8367 | 20850 | 0.0004 | - |
|
| 571 |
+
| 2.8435 | 20900 | 0.0002 | - |
|
| 572 |
+
| 2.8503 | 20950 | 0.0011 | - |
|
| 573 |
+
| 2.8571 | 21000 | 0.0002 | - |
|
| 574 |
+
| 2.8639 | 21050 | 0.0033 | - |
|
| 575 |
+
| 2.8707 | 21100 | 0.0024 | - |
|
| 576 |
+
| 2.8776 | 21150 | 0.0004 | - |
|
| 577 |
+
| 2.8844 | 21200 | 0.0002 | - |
|
| 578 |
+
| 2.8912 | 21250 | 0.0029 | - |
|
| 579 |
+
| 2.8980 | 21300 | 0.0004 | - |
|
| 580 |
+
| 2.9048 | 21350 | 0.0003 | - |
|
| 581 |
+
| 2.9116 | 21400 | 0.0024 | - |
|
| 582 |
+
| 2.9184 | 21450 | 0.0027 | - |
|
| 583 |
+
| 2.9252 | 21500 | 0.0003 | - |
|
| 584 |
+
| 2.9320 | 21550 | 0.0006 | - |
|
| 585 |
+
| 2.9388 | 21600 | 0.0002 | - |
|
| 586 |
+
| 2.9456 | 21650 | 0.0021 | - |
|
| 587 |
+
| 2.9524 | 21700 | 0.0011 | - |
|
| 588 |
+
| 2.9592 | 21750 | 0.0006 | - |
|
| 589 |
+
| 2.9660 | 21800 | 0.0002 | - |
|
| 590 |
+
| 2.9728 | 21850 | 0.0004 | - |
|
| 591 |
+
| 2.9796 | 21900 | 0.0008 | - |
|
| 592 |
+
| 2.9864 | 21950 | 0.0028 | - |
|
| 593 |
+
| 2.9932 | 22000 | 0.0004 | - |
|
| 594 |
+
| 3.0 | 22050 | 0.0002 | - |
|
| 595 |
+
| 3.0068 | 22100 | 0.0002 | - |
|
| 596 |
+
| 3.0136 | 22150 | 0.0026 | - |
|
| 597 |
+
| 3.0204 | 22200 | 0.0002 | - |
|
| 598 |
+
| 3.0272 | 22250 | 0.0004 | - |
|
| 599 |
+
| 3.0340 | 22300 | 0.0005 | - |
|
| 600 |
+
| 3.0408 | 22350 | 0.0005 | - |
|
| 601 |
+
| 3.0476 | 22400 | 0.0022 | - |
|
| 602 |
+
| 3.0544 | 22450 | 0.0006 | - |
|
| 603 |
+
| 3.0612 | 22500 | 0.0009 | - |
|
| 604 |
+
| 3.0680 | 22550 | 0.0004 | - |
|
| 605 |
+
| 3.0748 | 22600 | 0.0002 | - |
|
| 606 |
+
| 3.0816 | 22650 | 0.0003 | - |
|
| 607 |
+
| 3.0884 | 22700 | 0.0002 | - |
|
| 608 |
+
| 3.0952 | 22750 | 0.0002 | - |
|
| 609 |
+
| 3.1020 | 22800 | 0.0002 | - |
|
| 610 |
+
| 3.1088 | 22850 | 0.0041 | - |
|
| 611 |
+
| 3.1156 | 22900 | 0.0014 | - |
|
| 612 |
+
| 3.1224 | 22950 | 0.0019 | - |
|
| 613 |
+
| 3.1293 | 23000 | 0.0023 | - |
|
| 614 |
+
| 3.1361 | 23050 | 0.0003 | - |
|
| 615 |
+
| 3.1429 | 23100 | 0.0005 | - |
|
| 616 |
+
| 3.1497 | 23150 | 0.0003 | - |
|
| 617 |
+
| 3.1565 | 23200 | 0.0009 | - |
|
| 618 |
+
| 3.1633 | 23250 | 0.0023 | - |
|
| 619 |
+
| 3.1701 | 23300 | 0.0003 | - |
|
| 620 |
+
| 3.1769 | 23350 | 0.0002 | - |
|
| 621 |
+
| 3.1837 | 23400 | 0.0003 | - |
|
| 622 |
+
| 3.1905 | 23450 | 0.0003 | - |
|
| 623 |
+
| 3.1973 | 23500 | 0.0015 | - |
|
| 624 |
+
| 3.2041 | 23550 | 0.0002 | - |
|
| 625 |
+
| 3.2109 | 23600 | 0.0004 | - |
|
| 626 |
+
| 3.2177 | 23650 | 0.0004 | - |
|
| 627 |
+
| 3.2245 | 23700 | 0.0009 | - |
|
| 628 |
+
| 3.2313 | 23750 | 0.0002 | - |
|
| 629 |
+
| 3.2381 | 23800 | 0.0003 | - |
|
| 630 |
+
| 3.2449 | 23850 | 0.0002 | - |
|
| 631 |
+
| 3.2517 | 23900 | 0.0001 | - |
|
| 632 |
+
| 3.2585 | 23950 | 0.0003 | - |
|
| 633 |
+
| 3.2653 | 24000 | 0.0002 | - |
|
| 634 |
+
| 3.2721 | 24050 | 0.0019 | - |
|
| 635 |
+
| 3.2789 | 24100 | 0.0002 | - |
|
| 636 |
+
| 3.2857 | 24150 | 0.0002 | - |
|
| 637 |
+
| 3.2925 | 24200 | 0.0002 | - |
|
| 638 |
+
| 3.2993 | 24250 | 0.0002 | - |
|
| 639 |
+
| 3.3061 | 24300 | 0.0003 | - |
|
| 640 |
+
| 3.3129 | 24350 | 0.0007 | - |
|
| 641 |
+
| 3.3197 | 24400 | 0.0009 | - |
|
| 642 |
+
| 3.3265 | 24450 | 0.0006 | - |
|
| 643 |
+
| 3.3333 | 24500 | 0.0003 | - |
|
| 644 |
+
| 3.3401 | 24550 | 0.0008 | - |
|
| 645 |
+
| 3.3469 | 24600 | 0.0007 | - |
|
| 646 |
+
| 3.3537 | 24650 | 0.0003 | - |
|
| 647 |
+
| 3.3605 | 24700 | 0.0002 | - |
|
| 648 |
+
| 3.3673 | 24750 | 0.0001 | - |
|
| 649 |
+
| 3.3741 | 24800 | 0.0001 | - |
|
| 650 |
+
| 3.3810 | 24850 | 0.0002 | - |
|
| 651 |
+
| 3.3878 | 24900 | 0.0009 | - |
|
| 652 |
+
| 3.3946 | 24950 | 0.0005 | - |
|
| 653 |
+
| 3.4014 | 25000 | 0.0001 | - |
|
| 654 |
+
| 3.4082 | 25050 | 0.0003 | - |
|
| 655 |
+
| 3.4150 | 25100 | 0.0001 | - |
|
| 656 |
+
| 3.4218 | 25150 | 0.0002 | - |
|
| 657 |
+
| 3.4286 | 25200 | 0.0002 | - |
|
| 658 |
+
| 3.4354 | 25250 | 0.0003 | - |
|
| 659 |
+
| 3.4422 | 25300 | 0.0002 | - |
|
| 660 |
+
| 3.4490 | 25350 | 0.0004 | - |
|
| 661 |
+
| 3.4558 | 25400 | 0.0005 | - |
|
| 662 |
+
| 3.4626 | 25450 | 0.0005 | - |
|
| 663 |
+
| 3.4694 | 25500 | 0.0002 | - |
|
| 664 |
+
| 3.4762 | 25550 | 0.0003 | - |
|
| 665 |
+
| 3.4830 | 25600 | 0.0001 | - |
|
| 666 |
+
| 3.4898 | 25650 | 0.0003 | - |
|
| 667 |
+
| 3.4966 | 25700 | 0.0006 | - |
|
| 668 |
+
| 3.5034 | 25750 | 0.0002 | - |
|
| 669 |
+
| 3.5102 | 25800 | 0.0003 | - |
|
| 670 |
+
| 3.5170 | 25850 | 0.0005 | - |
|
| 671 |
+
| 3.5238 | 25900 | 0.0002 | - |
|
| 672 |
+
| 3.5306 | 25950 | 0.0003 | - |
|
| 673 |
+
| 3.5374 | 26000 | 0.0002 | - |
|
| 674 |
+
| 3.5442 | 26050 | 0.0004 | - |
|
| 675 |
+
| 3.5510 | 26100 | 0.0001 | - |
|
| 676 |
+
| 3.5578 | 26150 | 0.0001 | - |
|
| 677 |
+
| 3.5646 | 26200 | 0.0002 | - |
|
| 678 |
+
| 3.5714 | 26250 | 0.0001 | - |
|
| 679 |
+
| 3.5782 | 26300 | 0.0005 | - |
|
| 680 |
+
| 3.5850 | 26350 | 0.0002 | - |
|
| 681 |
+
| 3.5918 | 26400 | 0.0001 | - |
|
| 682 |
+
| 3.5986 | 26450 | 0.0001 | - |
|
| 683 |
+
| 3.6054 | 26500 | 0.0003 | - |
|
| 684 |
+
| 3.6122 | 26550 | 0.0002 | - |
|
| 685 |
+
| 3.6190 | 26600 | 0.0002 | - |
|
| 686 |
+
| 3.6259 | 26650 | 0.0001 | - |
|
| 687 |
+
| 3.6327 | 26700 | 0.0001 | - |
|
| 688 |
+
| 3.6395 | 26750 | 0.0001 | - |
|
| 689 |
+
| 3.6463 | 26800 | 0.0005 | - |
|
| 690 |
+
| 3.6531 | 26850 | 0.0001 | - |
|
| 691 |
+
| 3.6599 | 26900 | 0.0002 | - |
|
| 692 |
+
| 3.6667 | 26950 | 0.0001 | - |
|
| 693 |
+
| 3.6735 | 27000 | 0.0001 | - |
|
| 694 |
+
| 3.6803 | 27050 | 0.0002 | - |
|
| 695 |
+
| 3.6871 | 27100 | 0.0002 | - |
|
| 696 |
+
| 3.6939 | 27150 | 0.0001 | - |
|
| 697 |
+
| 3.7007 | 27200 | 0.0001 | - |
|
| 698 |
+
| 3.7075 | 27250 | 0.0002 | - |
|
| 699 |
+
| 3.7143 | 27300 | 0.0002 | - |
|
| 700 |
+
| 3.7211 | 27350 | 0.0001 | - |
|
| 701 |
+
| 3.7279 | 27400 | 0.0008 | - |
|
| 702 |
+
| 3.7347 | 27450 | 0.0002 | - |
|
| 703 |
+
| 3.7415 | 27500 | 0.0008 | - |
|
| 704 |
+
| 3.7483 | 27550 | 0.0005 | - |
|
| 705 |
+
| 3.7551 | 27600 | 0.0002 | - |
|
| 706 |
+
| 3.7619 | 27650 | 0.0003 | - |
|
| 707 |
+
| 3.7687 | 27700 | 0.0002 | - |
|
| 708 |
+
| 3.7755 | 27750 | 0.0007 | - |
|
| 709 |
+
| 3.7823 | 27800 | 0.0003 | - |
|
| 710 |
+
| 3.7891 | 27850 | 0.0001 | - |
|
| 711 |
+
| 3.7959 | 27900 | 0.0006 | - |
|
| 712 |
+
| 3.8027 | 27950 | 0.0002 | - |
|
| 713 |
+
| 3.8095 | 28000 | 0.0001 | - |
|
| 714 |
+
| 3.8163 | 28050 | 0.0001 | - |
|
| 715 |
+
| 3.8231 | 28100 | 0.0002 | - |
|
| 716 |
+
| 3.8299 | 28150 | 0.0001 | - |
|
| 717 |
+
| 3.8367 | 28200 | 0.0001 | - |
|
| 718 |
+
| 3.8435 | 28250 | 0.0004 | - |
|
| 719 |
+
| 3.8503 | 28300 | 0.0001 | - |
|
| 720 |
+
| 3.8571 | 28350 | 0.0001 | - |
|
| 721 |
+
| 3.8639 | 28400 | 0.0001 | - |
|
| 722 |
+
| 3.8707 | 28450 | 0.0005 | - |
|
| 723 |
+
| 3.8776 | 28500 | 0.0004 | - |
|
| 724 |
+
| 3.8844 | 28550 | 0.0001 | - |
|
| 725 |
+
| 3.8912 | 28600 | 0.0002 | - |
|
| 726 |
+
| 3.8980 | 28650 | 0.0002 | - |
|
| 727 |
+
| 3.9048 | 28700 | 0.0003 | - |
|
| 728 |
+
| 3.9116 | 28750 | 0.0001 | - |
|
| 729 |
+
| 3.9184 | 28800 | 0.0002 | - |
|
| 730 |
+
| 3.9252 | 28850 | 0.0001 | - |
|
| 731 |
+
| 3.9320 | 28900 | 0.0001 | - |
|
| 732 |
+
| 3.9388 | 28950 | 0.0002 | - |
|
| 733 |
+
| 3.9456 | 29000 | 0.0002 | - |
|
| 734 |
+
| 3.9524 | 29050 | 0.0001 | - |
|
| 735 |
+
| 3.9592 | 29100 | 0.0001 | - |
|
| 736 |
+
| 3.9660 | 29150 | 0.0002 | - |
|
| 737 |
+
| 3.9728 | 29200 | 0.0002 | - |
|
| 738 |
+
| 3.9796 | 29250 | 0.0003 | - |
|
| 739 |
+
| 3.9864 | 29300 | 0.0001 | - |
|
| 740 |
+
| 3.9932 | 29350 | 0.0007 | - |
|
| 741 |
+
| 4.0 | 29400 | 0.0007 | - |
|
| 742 |
+
|
| 743 |
+
### Framework Versions
|
| 744 |
+
- Python: 3.11.13
|
| 745 |
+
- SetFit: 1.1.2
|
| 746 |
+
- Sentence Transformers: 4.1.0
|
| 747 |
+
- Transformers: 4.52.4
|
| 748 |
+
- PyTorch: 2.6.0+cu124
|
| 749 |
+
- Datasets: 3.6.0
|
| 750 |
+
- Tokenizers: 0.21.2
|
| 751 |
+
|
| 752 |
+
## Citation
|
| 753 |
+
|
| 754 |
+
### BibTeX
|
| 755 |
+
```bibtex
|
| 756 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
| 757 |
+
doi = {10.48550/ARXIV.2209.11055},
|
| 758 |
+
url = {https://arxiv.org/abs/2209.11055},
|
| 759 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
| 760 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
| 761 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
| 762 |
+
publisher = {arXiv},
|
| 763 |
+
year = {2022},
|
| 764 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
| 765 |
+
}
|
| 766 |
+
```
|
| 767 |
+
|
| 768 |
+
<!--
|
| 769 |
+
## Glossary
|
| 770 |
+
|
| 771 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 772 |
+
-->
|
| 773 |
+
|
| 774 |
+
<!--
|
| 775 |
+
## Model Card Authors
|
| 776 |
+
|
| 777 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 778 |
+
-->
|
| 779 |
+
|
| 780 |
+
<!--
|
| 781 |
+
## Model Card Contact
|
| 782 |
+
|
| 783 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 784 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"BertModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"classifier_dropout": null,
|
| 7 |
+
"gradient_checkpointing": false,
|
| 8 |
+
"hidden_act": "gelu",
|
| 9 |
+
"hidden_dropout_prob": 0.1,
|
| 10 |
+
"hidden_size": 384,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"intermediate_size": 1536,
|
| 13 |
+
"layer_norm_eps": 1e-12,
|
| 14 |
+
"max_position_embeddings": 512,
|
| 15 |
+
"model_type": "bert",
|
| 16 |
+
"num_attention_heads": 12,
|
| 17 |
+
"num_hidden_layers": 12,
|
| 18 |
+
"pad_token_id": 0,
|
| 19 |
+
"position_embedding_type": "absolute",
|
| 20 |
+
"torch_dtype": "float32",
|
| 21 |
+
"transformers_version": "4.52.4",
|
| 22 |
+
"type_vocab_size": 2,
|
| 23 |
+
"use_cache": true,
|
| 24 |
+
"vocab_size": 250037
|
| 25 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "4.1.0",
|
| 4 |
+
"transformers": "4.52.4",
|
| 5 |
+
"pytorch": "2.6.0+cu124"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
+
}
|
config_setfit.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"labels": null,
|
| 3 |
+
"normalize_embeddings": false
|
| 4 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fea6952610dc188695ac36f9c0eebce6f91ca1ccf21deac9baf0672779c1f00b
|
| 3 |
+
size 470637416
|
model_head.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:290f65939eddbe6efd87ddf074602094361a5b94d133faacd663967562632361
|
| 3 |
+
size 168004
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 128,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<unk>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
|
| 3 |
+
size 17082987
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<pad>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"250001": {
|
| 36 |
+
"content": "<mask>",
|
| 37 |
+
"lstrip": true,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"bos_token": "<s>",
|
| 45 |
+
"clean_up_tokenization_spaces": false,
|
| 46 |
+
"cls_token": "<s>",
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"eos_token": "</s>",
|
| 49 |
+
"extra_special_tokens": {},
|
| 50 |
+
"mask_token": "<mask>",
|
| 51 |
+
"max_length": 128,
|
| 52 |
+
"model_max_length": 128,
|
| 53 |
+
"pad_to_multiple_of": null,
|
| 54 |
+
"pad_token": "<pad>",
|
| 55 |
+
"pad_token_type_id": 0,
|
| 56 |
+
"padding_side": "right",
|
| 57 |
+
"sep_token": "</s>",
|
| 58 |
+
"stride": 0,
|
| 59 |
+
"strip_accents": null,
|
| 60 |
+
"tokenize_chinese_chars": true,
|
| 61 |
+
"tokenizer_class": "BertTokenizer",
|
| 62 |
+
"truncation_side": "right",
|
| 63 |
+
"truncation_strategy": "longest_first",
|
| 64 |
+
"unk_token": "<unk>"
|
| 65 |
+
}
|
unigram.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
|
| 3 |
+
size 14763260
|