Sentence Similarity
Transformers
Safetensors
multilingual
nllb-llm2vec
feature-extraction
text-embedding
embeddings
information-retrieval
beir
text-classification
language-model
text-clustering
text-semantic-similarity
text-evaluation
text-reranking
Sentence Similarity
natural_questions
ms_marco
fever
hotpot_qa
mteb
custom_code
Fabian-David Schmidt
commited on
Commit
·
838c37a
1
Parent(s):
ba88283
update config and modelling files
Browse files- config.json +1 -3
- configuration_nllbllm2vec.py +15 -2
- modeling_nllbllm2vec.py +243 -407
config.json
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
{
|
| 2 |
-
"_name_or_path": "fdschmidt93/NLLBLLM2Vec",
|
| 3 |
"architectures": [
|
| 4 |
"NLLBLLM2Vec"
|
| 5 |
],
|
|
@@ -37,6 +36,5 @@
|
|
| 37 |
"vocab_size": 256206
|
| 38 |
},
|
| 39 |
"torch_dtype": "bfloat16",
|
| 40 |
-
"transformers_version": "4.
|
| 41 |
}
|
| 42 |
-
|
|
|
|
| 1 |
{
|
|
|
|
| 2 |
"architectures": [
|
| 3 |
"NLLBLLM2Vec"
|
| 4 |
],
|
|
|
|
| 36 |
"vocab_size": 256206
|
| 37 |
},
|
| 38 |
"torch_dtype": "bfloat16",
|
| 39 |
+
"transformers_version": "4.45.2"
|
| 40 |
}
|
|
|
configuration_nllbllm2vec.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
from transformers import AutoConfig
|
| 2 |
from transformers.configuration_utils import PretrainedConfig
|
| 3 |
from transformers.models.llama.configuration_llama import LlamaConfig
|
|
@@ -36,6 +37,7 @@ DEFAULT_M2M100_CONFIG = {
|
|
| 36 |
"vocab_size": 256206,
|
| 37 |
"tokenizer_class": "NllbTokenizer",
|
| 38 |
"max_length": 200,
|
|
|
|
| 39 |
}
|
| 40 |
|
| 41 |
DEFAULT_LLAMA_CONFIG = {
|
|
@@ -61,6 +63,7 @@ DEFAULT_LLAMA_CONFIG = {
|
|
| 61 |
"transformers_version": "4.40.0.dev0",
|
| 62 |
"use_cache": False,
|
| 63 |
"vocab_size": 128256,
|
|
|
|
| 64 |
}
|
| 65 |
|
| 66 |
|
|
@@ -70,13 +73,23 @@ class NLLBLLM2VecConfig(PretrainedConfig):
|
|
| 70 |
|
| 71 |
def __init__(
|
| 72 |
self,
|
| 73 |
-
nllb_config:
|
| 74 |
-
llm2vec_config:
|
|
|
|
|
|
|
| 75 |
**kwargs,
|
| 76 |
):
|
| 77 |
super().__init__(**kwargs)
|
|
|
|
| 78 |
self.nllb_config = M2M100Config(**nllb_config)
|
|
|
|
| 79 |
self.llm2vec_config = LlamaConfig(**llm2vec_config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
|
| 82 |
AutoConfig.register(NLLBLLM2VEC_TYPE, NLLBLLM2VecConfig)
|
|
|
|
| 1 |
+
from typing import Optional, Dict
|
| 2 |
from transformers import AutoConfig
|
| 3 |
from transformers.configuration_utils import PretrainedConfig
|
| 4 |
from transformers.models.llama.configuration_llama import LlamaConfig
|
|
|
|
| 37 |
"vocab_size": 256206,
|
| 38 |
"tokenizer_class": "NllbTokenizer",
|
| 39 |
"max_length": 200,
|
| 40 |
+
"_attn_implementation": "flash_attention_2",
|
| 41 |
}
|
| 42 |
|
| 43 |
DEFAULT_LLAMA_CONFIG = {
|
|
|
|
| 63 |
"transformers_version": "4.40.0.dev0",
|
| 64 |
"use_cache": False,
|
| 65 |
"vocab_size": 128256,
|
| 66 |
+
"_attn_implementation": "flash_attention_2",
|
| 67 |
}
|
| 68 |
|
| 69 |
|
|
|
|
| 73 |
|
| 74 |
def __init__(
|
| 75 |
self,
|
| 76 |
+
nllb_config: Dict = DEFAULT_M2M100_CONFIG,
|
| 77 |
+
llm2vec_config: Dict = DEFAULT_LLAMA_CONFIG,
|
| 78 |
+
_attn_implementation="sdpa",
|
| 79 |
+
initializer_range: Optional[float] = None,
|
| 80 |
**kwargs,
|
| 81 |
):
|
| 82 |
super().__init__(**kwargs)
|
| 83 |
+
self._attn_implementation = _attn_implementation
|
| 84 |
self.nllb_config = M2M100Config(**nllb_config)
|
| 85 |
+
self.nllb_config._attn_implementation = _attn_implementation
|
| 86 |
self.llm2vec_config = LlamaConfig(**llm2vec_config)
|
| 87 |
+
self.llm2vec_config._attn_implementation = _attn_implementation
|
| 88 |
+
if initializer_range is None:
|
| 89 |
+
self.initializer_range = self.llm2vec_config.initializer_range
|
| 90 |
+
else:
|
| 91 |
+
self.initializer_range = initializer_range
|
| 92 |
+
self.llm2vec_config.initializer_range
|
| 93 |
|
| 94 |
|
| 95 |
AutoConfig.register(NLLBLLM2VEC_TYPE, NLLBLLM2VecConfig)
|
modeling_nllbllm2vec.py
CHANGED
|
@@ -1,24 +1,69 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
import torch
|
| 4 |
import torch.nn as nn
|
| 5 |
import torch.nn.functional as F
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
from transformers.modeling_outputs import (
|
| 8 |
BaseModelOutputWithPooling,
|
|
|
|
| 9 |
SequenceClassifierOutputWithPast,
|
|
|
|
| 10 |
)
|
| 11 |
from transformers.modeling_utils import PreTrainedModel
|
|
|
|
| 12 |
from transformers.models.m2m_100.modeling_m2m_100 import M2M100Encoder
|
| 13 |
-
from transformers.
|
| 14 |
|
| 15 |
from .configuration_nllbllm2vec import NLLBLLM2VecConfig
|
| 16 |
from .modeling_llama_encoder import LlamaEncoderModel
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
class NLLBLLM2Vec(PreTrainedModel):
|
| 20 |
config_class = NLLBLLM2VecConfig
|
| 21 |
model_type = "nllb-llm2vec"
|
|
|
|
|
|
|
| 22 |
"""
|
| 23 |
NLLBLLM2Vec model combining NLLB and LLama encoders.
|
| 24 |
|
|
@@ -46,9 +91,13 @@ class NLLBLLM2Vec(PreTrainedModel):
|
|
| 46 |
|
| 47 |
if config is not None:
|
| 48 |
super().__init__(config, *inputs, **kwargs)
|
|
|
|
|
|
|
|
|
|
| 49 |
self.nllb_encoder = nllb_encoder or M2M100Encoder(config.nllb_config)
|
| 50 |
self.llm2vec = llm2vec or LlamaEncoderModel(config.llm2vec_config)
|
| 51 |
self.config = config
|
|
|
|
| 52 |
else:
|
| 53 |
# Both encoders are provided
|
| 54 |
self.nllb_encoder = cast(M2M100Encoder, nllb_encoder)
|
|
@@ -64,7 +113,15 @@ class NLLBLLM2Vec(PreTrainedModel):
|
|
| 64 |
self.llm2vec.config.hidden_size,
|
| 65 |
bias=False,
|
| 66 |
)
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
def forward(
|
| 70 |
self,
|
|
@@ -91,14 +148,12 @@ class NLLBLLM2Vec(PreTrainedModel):
|
|
| 91 |
else:
|
| 92 |
seq_indices, seq_offsets = indices
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
nllb_last_hidden_state = self.up_proj(nllb_last_hidden_state)
|
| 101 |
-
nllb_last_hidden_state = nllb_last_hidden_state.detach().clone()
|
| 102 |
outputs = self.llm2vec(
|
| 103 |
inputs_embeds=nllb_last_hidden_state,
|
| 104 |
attention_mask=attention_mask,
|
|
@@ -133,14 +188,22 @@ class NLLBLLM2Vec(PreTrainedModel):
|
|
| 133 |
self,
|
| 134 |
inputs: List[str],
|
| 135 |
src_lang: str = "eng_Latn",
|
|
|
|
| 136 |
tokenize_kwargs: Optional[Dict[str, Any]] = None,
|
|
|
|
| 137 |
) -> torch.Tensor:
|
| 138 |
"""
|
| 139 |
Encode input texts into embeddings.
|
| 140 |
|
| 141 |
Args:
|
| 142 |
inputs (List[str]): List of input texts.
|
| 143 |
-
src_lang (str): Source language code.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
tokenize_kwargs (Optional[Dict[str, Any]]): Additional keyword arguments for the tokenizer.
|
| 145 |
Defaults to:
|
| 146 |
>> tokenize_kwargs = {
|
|
@@ -149,26 +212,54 @@ class NLLBLLM2Vec(PreTrainedModel):
|
|
| 149 |
>> "max_length": 512,
|
| 150 |
>> "return_tensors": "pt",
|
| 151 |
>> }
|
| 152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
Returns:
|
| 154 |
torch.Tensor: Mean-pooled sequence embeddings of the inputs.
|
| 155 |
"""
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
"truncation": True,
|
| 160 |
-
"max_length": 512,
|
| 161 |
-
"return_tensors": "pt",
|
| 162 |
-
}
|
| 163 |
|
| 164 |
tokenizer = self.tokenizer
|
| 165 |
tokenizer.src_lang = src_lang
|
| 166 |
device = next(self.parameters()).device
|
| 167 |
-
batch = tokenizer(inputs, **tokenize_kwargs).to(device)
|
| 168 |
-
device_type = device.type # e.g., 'cuda' or 'cpu'
|
| 169 |
|
| 170 |
-
|
| 171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
@staticmethod
|
| 174 |
def _get_input_offsets(
|
|
@@ -192,12 +283,8 @@ class NLLBLLM2Vec(PreTrainedModel):
|
|
| 192 |
non_padded_lengths = attention_mask.sum(
|
| 193 |
dim=1
|
| 194 |
) # Count non-padded tokens per sequence
|
| 195 |
-
offsets =
|
| 196 |
-
|
| 197 |
-
torch.tensor([0], device=attention_mask.device),
|
| 198 |
-
non_padded_lengths.cumsum(dim=0)[:-1],
|
| 199 |
-
]
|
| 200 |
-
)
|
| 201 |
return input_indices, offsets
|
| 202 |
|
| 203 |
@staticmethod
|
|
@@ -235,10 +322,13 @@ class NLLBLLM2VecForSequenceClassification(PreTrainedModel):
|
|
| 235 |
config_class = NLLBLLM2VecConfig
|
| 236 |
model_type = "nllb-llm2vec"
|
| 237 |
base_model_prefix = "model"
|
|
|
|
|
|
|
| 238 |
|
| 239 |
def __init__(self, config):
|
| 240 |
super().__init__(config)
|
| 241 |
self.num_labels = config.num_labels
|
|
|
|
| 242 |
self.model = NLLBLLM2Vec(config)
|
| 243 |
self.score = nn.Linear(
|
| 244 |
config.llm2vec_config.hidden_size, self.num_labels, bias=False
|
|
@@ -247,114 +337,29 @@ class NLLBLLM2VecForSequenceClassification(PreTrainedModel):
|
|
| 247 |
# Initialize weights and apply final processing
|
| 248 |
self.post_init()
|
| 249 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
def get_input_embeddings(self):
|
| 251 |
return self.model.nllb.embed_tokens
|
| 252 |
|
| 253 |
def set_input_embeddings(self, value):
|
| 254 |
self.model.nllb.embed_tokens = value
|
| 255 |
-
|
| 256 |
-
# We need to modify the adapter config and state dict at runtime
|
| 257 |
-
# such that adapter weights are correctly loaded from an AutoModel-suitable
|
| 258 |
-
# adapter_config.json and adapter_config.safetensors
|
| 259 |
-
def load_adapter(
|
| 260 |
-
self,
|
| 261 |
-
peft_model_id: Optional[str] = None,
|
| 262 |
-
adapter_name: Optional[str] = None,
|
| 263 |
-
revision: Optional[str] = None,
|
| 264 |
-
token: Optional[str] = None,
|
| 265 |
-
device_map: Optional[str] = "auto",
|
| 266 |
-
max_memory: Optional[str] = None,
|
| 267 |
-
offload_folder: Optional[str] = None,
|
| 268 |
-
offload_index: Optional[int] = None,
|
| 269 |
-
peft_config: Optional[Dict[str, Any]] = None,
|
| 270 |
-
adapter_state_dict: Optional[Dict[str, "torch.Tensor"]] = None,
|
| 271 |
-
adapter_kwargs: Optional[Dict[str, Any]] = None,
|
| 272 |
-
) -> None:
|
| 273 |
-
from peft import PeftConfig, load_peft_weights # type: ignore
|
| 274 |
-
from transformers.utils import find_adapter_config_file
|
| 275 |
-
|
| 276 |
-
if adapter_kwargs is None:
|
| 277 |
-
adapter_kwargs = {}
|
| 278 |
-
|
| 279 |
-
if "device" not in adapter_kwargs:
|
| 280 |
-
device = (
|
| 281 |
-
self.device
|
| 282 |
-
if not hasattr(self, "hf_device_map")
|
| 283 |
-
else list(self.hf_device_map.values())[0]
|
| 284 |
-
)
|
| 285 |
-
else:
|
| 286 |
-
device = adapter_kwargs["device"]
|
| 287 |
-
# To avoid PEFT errors later on with safetensors.
|
| 288 |
-
if isinstance(device, torch.device):
|
| 289 |
-
device = str(device)
|
| 290 |
-
|
| 291 |
-
# Override token with adapter_kwargs' token
|
| 292 |
-
if "token" in adapter_kwargs:
|
| 293 |
-
token = adapter_kwargs["token"]
|
| 294 |
-
|
| 295 |
-
if peft_model_id is None and (
|
| 296 |
-
adapter_state_dict is None and peft_config is None
|
| 297 |
-
):
|
| 298 |
-
raise ValueError(
|
| 299 |
-
"You should either pass a `peft_model_id` or a `peft_config` and `adapter_state_dict` to load an adapter."
|
| 300 |
-
)
|
| 301 |
-
|
| 302 |
-
if peft_config is None:
|
| 303 |
-
assert isinstance(peft_model_id, str)
|
| 304 |
-
adapter_config_file = find_adapter_config_file(
|
| 305 |
-
peft_model_id,
|
| 306 |
-
token=token,
|
| 307 |
-
**adapter_kwargs,
|
| 308 |
-
)
|
| 309 |
-
|
| 310 |
-
if adapter_config_file is None:
|
| 311 |
-
raise ValueError(
|
| 312 |
-
f"adapter model file not found in {peft_model_id}. Make sure you are passing the correct path to the "
|
| 313 |
-
"adapter model."
|
| 314 |
-
)
|
| 315 |
-
|
| 316 |
-
peft_config = cast(
|
| 317 |
-
Dict[str, Any],
|
| 318 |
-
PeftConfig.from_pretrained(
|
| 319 |
-
peft_model_id,
|
| 320 |
-
token=token,
|
| 321 |
-
**adapter_kwargs,
|
| 322 |
-
),
|
| 323 |
-
)
|
| 324 |
-
peft_config.target_modules = [ # type: ignore
|
| 325 |
-
"model." + module
|
| 326 |
-
for module in peft_config.target_modules # type: ignore
|
| 327 |
-
]
|
| 328 |
-
|
| 329 |
-
if peft_model_id is not None:
|
| 330 |
-
adapter_state_dict = load_peft_weights(
|
| 331 |
-
peft_model_id, token=token, device=device, **adapter_kwargs
|
| 332 |
-
)
|
| 333 |
-
|
| 334 |
-
assert isinstance(adapter_state_dict, dict)
|
| 335 |
-
|
| 336 |
-
# correctly set the name
|
| 337 |
-
processed_adapter_state_dict = {}
|
| 338 |
-
prefix = "base_model."
|
| 339 |
-
for key, value in adapter_state_dict.items():
|
| 340 |
-
if key.startswith(prefix):
|
| 341 |
-
new_key = key[len(prefix) :]
|
| 342 |
-
else:
|
| 343 |
-
new_key = key
|
| 344 |
-
processed_adapter_state_dict[new_key] = value
|
| 345 |
-
return super().load_adapter(
|
| 346 |
-
peft_model_id=None,
|
| 347 |
-
adapter_name=adapter_name,
|
| 348 |
-
revision=revision,
|
| 349 |
-
token=token,
|
| 350 |
-
device_map=device_map,
|
| 351 |
-
max_memory=max_memory,
|
| 352 |
-
offload_folder=offload_folder,
|
| 353 |
-
offload_index=offload_index,
|
| 354 |
-
peft_config=peft_config,
|
| 355 |
-
adapter_state_dict=processed_adapter_state_dict,
|
| 356 |
-
adapter_kwargs=adapter_kwargs,
|
| 357 |
-
)
|
| 358 |
|
| 359 |
def forward(
|
| 360 |
self,
|
|
@@ -420,10 +425,110 @@ class NLLBLLM2VecForSequenceClassification(PreTrainedModel):
|
|
| 420 |
output = (pooled_logits,) + transformer_outputs[1:]
|
| 421 |
return ((loss,) + output) if loss is not None else output
|
| 422 |
|
| 423 |
-
return
|
| 424 |
loss=loss,
|
| 425 |
hidden_states=hidden_states,
|
| 426 |
logits=pooled_logits,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 427 |
)
|
| 428 |
|
| 429 |
|
|
@@ -431,275 +536,6 @@ AutoModel.register(NLLBLLM2VecConfig, NLLBLLM2Vec)
|
|
| 431 |
AutoModelForSequenceClassification.register(
|
| 432 |
NLLBLLM2VecConfig, NLLBLLM2VecForSequenceClassification
|
| 433 |
)
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
from transformers import AutoModel
|
| 438 |
-
|
| 439 |
-
cfg = NLLBLLM2VecConfig()
|
| 440 |
-
model = NLLBLLM2Vec(cfg)
|
| 441 |
-
|
| 442 |
-
nllb = AutoModel.from_pretrained(
|
| 443 |
-
"facebook/nllb-200-distilled-600M", torch_dtype=torch.bfloat16
|
| 444 |
-
).encoder
|
| 445 |
-
# llm2vec = AutoModel.from_pretrained(
|
| 446 |
-
# "fdschmidt93/LLM2Vec-Meta-Llama-3.1-8B-Instruct-mntp-unsup-simcse",
|
| 447 |
-
# trust_remote_code=True,
|
| 448 |
-
# torch_dtype=torch.bfloat16,
|
| 449 |
-
# )
|
| 450 |
-
llama = LlamaEncoderModel.from_pretrained("../trident-nllb-llm2vec/data/model/llm2vec_llama3-1_unsupervised/", torch_dtype=torch.bfloat16)
|
| 451 |
-
model.nllb_encoder.load_state_dict(nllb.state_dict())
|
| 452 |
-
model.llm2vec.load_state_dict(llama.state_dict())
|
| 453 |
-
ckpt = torch.load("./step=20000-weights.ckpt", map_location="cpu")
|
| 454 |
-
model.up_proj.load_state_dict({"weight": ckpt["model.up_proj.weight"]})
|
| 455 |
-
|
| 456 |
-
model.save_pretrained("../weights_new")
|
| 457 |
-
|
| 458 |
-
from peft.mapping import get_peft_model
|
| 459 |
-
from peft.tuners.lora.config import LoraConfig
|
| 460 |
-
|
| 461 |
-
lora_config = LoraConfig(
|
| 462 |
-
r=16,
|
| 463 |
-
lora_alpha=32,
|
| 464 |
-
lora_dropout=0.0,
|
| 465 |
-
bias="none",
|
| 466 |
-
task_type="FEATURE_EXTRACTION",
|
| 467 |
-
target_modules=[
|
| 468 |
-
"llm2vec.layers.0.self_attn.q_proj",
|
| 469 |
-
"llm2vec.layers.0.self_attn.k_proj",
|
| 470 |
-
"llm2vec.layers.0.self_attn.v_proj",
|
| 471 |
-
"llm2vec.layers.0.self_attn.o_proj",
|
| 472 |
-
"llm2vec.layers.0.mlp.gate_proj",
|
| 473 |
-
"llm2vec.layers.0.mlp.up_proj",
|
| 474 |
-
"llm2vec.layers.0.mlp.down_proj",
|
| 475 |
-
"llm2vec.layers.1.self_attn.q_proj",
|
| 476 |
-
"llm2vec.layers.1.self_attn.k_proj",
|
| 477 |
-
"llm2vec.layers.1.self_attn.v_proj",
|
| 478 |
-
"llm2vec.layers.1.self_attn.o_proj",
|
| 479 |
-
"llm2vec.layers.1.mlp.gate_proj",
|
| 480 |
-
"llm2vec.layers.1.mlp.up_proj",
|
| 481 |
-
"llm2vec.layers.1.mlp.down_proj",
|
| 482 |
-
"llm2vec.layers.2.self_attn.q_proj",
|
| 483 |
-
"llm2vec.layers.2.self_attn.k_proj",
|
| 484 |
-
"llm2vec.layers.2.self_attn.v_proj",
|
| 485 |
-
"llm2vec.layers.2.self_attn.o_proj",
|
| 486 |
-
"llm2vec.layers.2.mlp.gate_proj",
|
| 487 |
-
"llm2vec.layers.2.mlp.up_proj",
|
| 488 |
-
"llm2vec.layers.2.mlp.down_proj",
|
| 489 |
-
"llm2vec.layers.3.self_attn.q_proj",
|
| 490 |
-
"llm2vec.layers.3.self_attn.k_proj",
|
| 491 |
-
"llm2vec.layers.3.self_attn.v_proj",
|
| 492 |
-
"llm2vec.layers.3.self_attn.o_proj",
|
| 493 |
-
"llm2vec.layers.3.mlp.gate_proj",
|
| 494 |
-
"llm2vec.layers.3.mlp.up_proj",
|
| 495 |
-
"llm2vec.layers.3.mlp.down_proj",
|
| 496 |
-
"llm2vec.layers.4.self_attn.q_proj",
|
| 497 |
-
"llm2vec.layers.4.self_attn.k_proj",
|
| 498 |
-
"llm2vec.layers.4.self_attn.v_proj",
|
| 499 |
-
"llm2vec.layers.4.self_attn.o_proj",
|
| 500 |
-
"llm2vec.layers.4.mlp.gate_proj",
|
| 501 |
-
"llm2vec.layers.4.mlp.up_proj",
|
| 502 |
-
"llm2vec.layers.4.mlp.down_proj",
|
| 503 |
-
"llm2vec.layers.5.self_attn.q_proj",
|
| 504 |
-
"llm2vec.layers.5.self_attn.k_proj",
|
| 505 |
-
"llm2vec.layers.5.self_attn.v_proj",
|
| 506 |
-
"llm2vec.layers.5.self_attn.o_proj",
|
| 507 |
-
"llm2vec.layers.5.mlp.gate_proj",
|
| 508 |
-
"llm2vec.layers.5.mlp.up_proj",
|
| 509 |
-
"llm2vec.layers.5.mlp.down_proj",
|
| 510 |
-
"llm2vec.layers.6.self_attn.q_proj",
|
| 511 |
-
"llm2vec.layers.6.self_attn.k_proj",
|
| 512 |
-
"llm2vec.layers.6.self_attn.v_proj",
|
| 513 |
-
"llm2vec.layers.6.self_attn.o_proj",
|
| 514 |
-
"llm2vec.layers.6.mlp.gate_proj",
|
| 515 |
-
"llm2vec.layers.6.mlp.up_proj",
|
| 516 |
-
"llm2vec.layers.6.mlp.down_proj",
|
| 517 |
-
"llm2vec.layers.7.self_attn.q_proj",
|
| 518 |
-
"llm2vec.layers.7.self_attn.k_proj",
|
| 519 |
-
"llm2vec.layers.7.self_attn.v_proj",
|
| 520 |
-
"llm2vec.layers.7.self_attn.o_proj",
|
| 521 |
-
"llm2vec.layers.7.mlp.gate_proj",
|
| 522 |
-
"llm2vec.layers.7.mlp.up_proj",
|
| 523 |
-
"llm2vec.layers.7.mlp.down_proj",
|
| 524 |
-
"llm2vec.layers.8.self_attn.q_proj",
|
| 525 |
-
"llm2vec.layers.8.self_attn.k_proj",
|
| 526 |
-
"llm2vec.layers.8.self_attn.v_proj",
|
| 527 |
-
"llm2vec.layers.8.self_attn.o_proj",
|
| 528 |
-
"llm2vec.layers.8.mlp.gate_proj",
|
| 529 |
-
"llm2vec.layers.8.mlp.up_proj",
|
| 530 |
-
"llm2vec.layers.8.mlp.down_proj",
|
| 531 |
-
"llm2vec.layers.9.self_attn.q_proj",
|
| 532 |
-
"llm2vec.layers.9.self_attn.k_proj",
|
| 533 |
-
"llm2vec.layers.9.self_attn.v_proj",
|
| 534 |
-
"llm2vec.layers.9.self_attn.o_proj",
|
| 535 |
-
"llm2vec.layers.9.mlp.gate_proj",
|
| 536 |
-
"llm2vec.layers.9.mlp.up_proj",
|
| 537 |
-
"llm2vec.layers.9.mlp.down_proj",
|
| 538 |
-
"llm2vec.layers.10.self_attn.q_proj",
|
| 539 |
-
"llm2vec.layers.10.self_attn.k_proj",
|
| 540 |
-
"llm2vec.layers.10.self_attn.v_proj",
|
| 541 |
-
"llm2vec.layers.10.self_attn.o_proj",
|
| 542 |
-
"llm2vec.layers.10.mlp.gate_proj",
|
| 543 |
-
"llm2vec.layers.10.mlp.up_proj",
|
| 544 |
-
"llm2vec.layers.10.mlp.down_proj",
|
| 545 |
-
"llm2vec.layers.11.self_attn.q_proj",
|
| 546 |
-
"llm2vec.layers.11.self_attn.k_proj",
|
| 547 |
-
"llm2vec.layers.11.self_attn.v_proj",
|
| 548 |
-
"llm2vec.layers.11.self_attn.o_proj",
|
| 549 |
-
"llm2vec.layers.11.mlp.gate_proj",
|
| 550 |
-
"llm2vec.layers.11.mlp.up_proj",
|
| 551 |
-
"llm2vec.layers.11.mlp.down_proj",
|
| 552 |
-
"llm2vec.layers.12.self_attn.q_proj",
|
| 553 |
-
"llm2vec.layers.12.self_attn.k_proj",
|
| 554 |
-
"llm2vec.layers.12.self_attn.v_proj",
|
| 555 |
-
"llm2vec.layers.12.self_attn.o_proj",
|
| 556 |
-
"llm2vec.layers.12.mlp.gate_proj",
|
| 557 |
-
"llm2vec.layers.12.mlp.up_proj",
|
| 558 |
-
"llm2vec.layers.12.mlp.down_proj",
|
| 559 |
-
"llm2vec.layers.13.self_attn.q_proj",
|
| 560 |
-
"llm2vec.layers.13.self_attn.k_proj",
|
| 561 |
-
"llm2vec.layers.13.self_attn.v_proj",
|
| 562 |
-
"llm2vec.layers.13.self_attn.o_proj",
|
| 563 |
-
"llm2vec.layers.13.mlp.gate_proj",
|
| 564 |
-
"llm2vec.layers.13.mlp.up_proj",
|
| 565 |
-
"llm2vec.layers.13.mlp.down_proj",
|
| 566 |
-
"llm2vec.layers.14.self_attn.q_proj",
|
| 567 |
-
"llm2vec.layers.14.self_attn.k_proj",
|
| 568 |
-
"llm2vec.layers.14.self_attn.v_proj",
|
| 569 |
-
"llm2vec.layers.14.self_attn.o_proj",
|
| 570 |
-
"llm2vec.layers.14.mlp.gate_proj",
|
| 571 |
-
"llm2vec.layers.14.mlp.up_proj",
|
| 572 |
-
"llm2vec.layers.14.mlp.down_proj",
|
| 573 |
-
"llm2vec.layers.15.self_attn.q_proj",
|
| 574 |
-
"llm2vec.layers.15.self_attn.k_proj",
|
| 575 |
-
"llm2vec.layers.15.self_attn.v_proj",
|
| 576 |
-
"llm2vec.layers.15.self_attn.o_proj",
|
| 577 |
-
"llm2vec.layers.15.mlp.gate_proj",
|
| 578 |
-
"llm2vec.layers.15.mlp.up_proj",
|
| 579 |
-
"llm2vec.layers.15.mlp.down_proj",
|
| 580 |
-
"llm2vec.layers.16.self_attn.q_proj",
|
| 581 |
-
"llm2vec.layers.16.self_attn.k_proj",
|
| 582 |
-
"llm2vec.layers.16.self_attn.v_proj",
|
| 583 |
-
"llm2vec.layers.16.self_attn.o_proj",
|
| 584 |
-
"llm2vec.layers.16.mlp.gate_proj",
|
| 585 |
-
"llm2vec.layers.16.mlp.up_proj",
|
| 586 |
-
"llm2vec.layers.16.mlp.down_proj",
|
| 587 |
-
"llm2vec.layers.17.self_attn.q_proj",
|
| 588 |
-
"llm2vec.layers.17.self_attn.k_proj",
|
| 589 |
-
"llm2vec.layers.17.self_attn.v_proj",
|
| 590 |
-
"llm2vec.layers.17.self_attn.o_proj",
|
| 591 |
-
"llm2vec.layers.17.mlp.gate_proj",
|
| 592 |
-
"llm2vec.layers.17.mlp.up_proj",
|
| 593 |
-
"llm2vec.layers.17.mlp.down_proj",
|
| 594 |
-
"llm2vec.layers.18.self_attn.q_proj",
|
| 595 |
-
"llm2vec.layers.18.self_attn.k_proj",
|
| 596 |
-
"llm2vec.layers.18.self_attn.v_proj",
|
| 597 |
-
"llm2vec.layers.18.self_attn.o_proj",
|
| 598 |
-
"llm2vec.layers.18.mlp.gate_proj",
|
| 599 |
-
"llm2vec.layers.18.mlp.up_proj",
|
| 600 |
-
"llm2vec.layers.18.mlp.down_proj",
|
| 601 |
-
"llm2vec.layers.19.self_attn.q_proj",
|
| 602 |
-
"llm2vec.layers.19.self_attn.k_proj",
|
| 603 |
-
"llm2vec.layers.19.self_attn.v_proj",
|
| 604 |
-
"llm2vec.layers.19.self_attn.o_proj",
|
| 605 |
-
"llm2vec.layers.19.mlp.gate_proj",
|
| 606 |
-
"llm2vec.layers.19.mlp.up_proj",
|
| 607 |
-
"llm2vec.layers.19.mlp.down_proj",
|
| 608 |
-
"llm2vec.layers.20.self_attn.q_proj",
|
| 609 |
-
"llm2vec.layers.20.self_attn.k_proj",
|
| 610 |
-
"llm2vec.layers.20.self_attn.v_proj",
|
| 611 |
-
"llm2vec.layers.20.self_attn.o_proj",
|
| 612 |
-
"llm2vec.layers.20.mlp.gate_proj",
|
| 613 |
-
"llm2vec.layers.20.mlp.up_proj",
|
| 614 |
-
"llm2vec.layers.20.mlp.down_proj",
|
| 615 |
-
"llm2vec.layers.21.self_attn.q_proj",
|
| 616 |
-
"llm2vec.layers.21.self_attn.k_proj",
|
| 617 |
-
"llm2vec.layers.21.self_attn.v_proj",
|
| 618 |
-
"llm2vec.layers.21.self_attn.o_proj",
|
| 619 |
-
"llm2vec.layers.21.mlp.gate_proj",
|
| 620 |
-
"llm2vec.layers.21.mlp.up_proj",
|
| 621 |
-
"llm2vec.layers.21.mlp.down_proj",
|
| 622 |
-
"llm2vec.layers.22.self_attn.q_proj",
|
| 623 |
-
"llm2vec.layers.22.self_attn.k_proj",
|
| 624 |
-
"llm2vec.layers.22.self_attn.v_proj",
|
| 625 |
-
"llm2vec.layers.22.self_attn.o_proj",
|
| 626 |
-
"llm2vec.layers.22.mlp.gate_proj",
|
| 627 |
-
"llm2vec.layers.22.mlp.up_proj",
|
| 628 |
-
"llm2vec.layers.22.mlp.down_proj",
|
| 629 |
-
"llm2vec.layers.23.self_attn.q_proj",
|
| 630 |
-
"llm2vec.layers.23.self_attn.k_proj",
|
| 631 |
-
"llm2vec.layers.23.self_attn.v_proj",
|
| 632 |
-
"llm2vec.layers.23.self_attn.o_proj",
|
| 633 |
-
"llm2vec.layers.23.mlp.gate_proj",
|
| 634 |
-
"llm2vec.layers.23.mlp.up_proj",
|
| 635 |
-
"llm2vec.layers.23.mlp.down_proj",
|
| 636 |
-
"llm2vec.layers.24.self_attn.q_proj",
|
| 637 |
-
"llm2vec.layers.24.self_attn.k_proj",
|
| 638 |
-
"llm2vec.layers.24.self_attn.v_proj",
|
| 639 |
-
"llm2vec.layers.24.self_attn.o_proj",
|
| 640 |
-
"llm2vec.layers.24.mlp.gate_proj",
|
| 641 |
-
"llm2vec.layers.24.mlp.up_proj",
|
| 642 |
-
"llm2vec.layers.24.mlp.down_proj",
|
| 643 |
-
"llm2vec.layers.25.self_attn.q_proj",
|
| 644 |
-
"llm2vec.layers.25.self_attn.k_proj",
|
| 645 |
-
"llm2vec.layers.25.self_attn.v_proj",
|
| 646 |
-
"llm2vec.layers.25.self_attn.o_proj",
|
| 647 |
-
"llm2vec.layers.25.mlp.gate_proj",
|
| 648 |
-
"llm2vec.layers.25.mlp.up_proj",
|
| 649 |
-
"llm2vec.layers.25.mlp.down_proj",
|
| 650 |
-
"llm2vec.layers.26.self_attn.q_proj",
|
| 651 |
-
"llm2vec.layers.26.self_attn.k_proj",
|
| 652 |
-
"llm2vec.layers.26.self_attn.v_proj",
|
| 653 |
-
"llm2vec.layers.26.self_attn.o_proj",
|
| 654 |
-
"llm2vec.layers.26.mlp.gate_proj",
|
| 655 |
-
"llm2vec.layers.26.mlp.up_proj",
|
| 656 |
-
"llm2vec.layers.26.mlp.down_proj",
|
| 657 |
-
"llm2vec.layers.27.self_attn.q_proj",
|
| 658 |
-
"llm2vec.layers.27.self_attn.k_proj",
|
| 659 |
-
"llm2vec.layers.27.self_attn.v_proj",
|
| 660 |
-
"llm2vec.layers.27.self_attn.o_proj",
|
| 661 |
-
"llm2vec.layers.27.mlp.gate_proj",
|
| 662 |
-
"llm2vec.layers.27.mlp.up_proj",
|
| 663 |
-
"llm2vec.layers.27.mlp.down_proj",
|
| 664 |
-
"llm2vec.layers.28.self_attn.q_proj",
|
| 665 |
-
"llm2vec.layers.28.self_attn.k_proj",
|
| 666 |
-
"llm2vec.layers.28.self_attn.v_proj",
|
| 667 |
-
"llm2vec.layers.28.self_attn.o_proj",
|
| 668 |
-
"llm2vec.layers.28.mlp.gate_proj",
|
| 669 |
-
"llm2vec.layers.28.mlp.up_proj",
|
| 670 |
-
"llm2vec.layers.28.mlp.down_proj",
|
| 671 |
-
"llm2vec.layers.29.self_attn.q_proj",
|
| 672 |
-
"llm2vec.layers.29.self_attn.k_proj",
|
| 673 |
-
"llm2vec.layers.29.self_attn.v_proj",
|
| 674 |
-
"llm2vec.layers.29.self_attn.o_proj",
|
| 675 |
-
"llm2vec.layers.29.mlp.gate_proj",
|
| 676 |
-
"llm2vec.layers.29.mlp.up_proj",
|
| 677 |
-
"llm2vec.layers.29.mlp.down_proj",
|
| 678 |
-
"llm2vec.layers.30.self_attn.q_proj",
|
| 679 |
-
"llm2vec.layers.30.self_attn.k_proj",
|
| 680 |
-
"llm2vec.layers.30.self_attn.v_proj",
|
| 681 |
-
"llm2vec.layers.30.self_attn.o_proj",
|
| 682 |
-
"llm2vec.layers.30.mlp.gate_proj",
|
| 683 |
-
"llm2vec.layers.30.mlp.up_proj",
|
| 684 |
-
"llm2vec.layers.30.mlp.down_proj",
|
| 685 |
-
"llm2vec.layers.31.self_attn.q_proj",
|
| 686 |
-
"llm2vec.layers.31.self_attn.k_proj",
|
| 687 |
-
"llm2vec.layers.31.self_attn.v_proj",
|
| 688 |
-
"llm2vec.layers.31.self_attn.o_proj",
|
| 689 |
-
"llm2vec.layers.31.mlp.gate_proj",
|
| 690 |
-
"llm2vec.layers.31.mlp.up_proj",
|
| 691 |
-
"llm2vec.layers.31.mlp.down_proj",
|
| 692 |
-
],
|
| 693 |
-
)
|
| 694 |
-
peft_model = get_peft_model(model, lora_config)
|
| 695 |
-
peft_model.save_pretrained("../nllb-llm2vec-saved")
|
| 696 |
-
import json
|
| 697 |
-
|
| 698 |
-
with open("./model.safetensors.index.json", "r") as f:
|
| 699 |
-
print(json.load(f))
|
| 700 |
-
|
| 701 |
-
from transformers import AutoModelForSequenceClassification
|
| 702 |
-
|
| 703 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
| 704 |
-
".", trust_remote_code=True, device_map="cuda"
|
| 705 |
-
)
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import warnings
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union, cast
|
| 5 |
|
| 6 |
import torch
|
| 7 |
import torch.nn as nn
|
| 8 |
import torch.nn.functional as F
|
| 9 |
+
import transformers
|
| 10 |
+
from packaging import version
|
| 11 |
+
from torch.utils.data.dataloader import DataLoader
|
| 12 |
+
from tqdm import tqdm
|
| 13 |
+
from transformers.cache_utils import Cache
|
| 14 |
from transformers.modeling_outputs import (
|
| 15 |
BaseModelOutputWithPooling,
|
| 16 |
+
ModelOutput,
|
| 17 |
SequenceClassifierOutputWithPast,
|
| 18 |
+
TokenClassifierOutput,
|
| 19 |
)
|
| 20 |
from transformers.modeling_utils import PreTrainedModel
|
| 21 |
+
from transformers.models.auto import AutoModel, AutoModelForSequenceClassification
|
| 22 |
from transformers.models.m2m_100.modeling_m2m_100 import M2M100Encoder
|
| 23 |
+
from transformers.tokenization_utils import BatchEncoding
|
| 24 |
|
| 25 |
from .configuration_nllbllm2vec import NLLBLLM2VecConfig
|
| 26 |
from .modeling_llama_encoder import LlamaEncoderModel
|
| 27 |
|
| 28 |
+
DEFAULT_TOKENIZE_KWARGS = {
|
| 29 |
+
"padding": True,
|
| 30 |
+
"truncation": True,
|
| 31 |
+
"max_length": 512,
|
| 32 |
+
"return_tensors": "pt",
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
DEFAULT_DATALOADER_KWARGS = {
|
| 36 |
+
"shuffle": False,
|
| 37 |
+
"batch_size": 32,
|
| 38 |
+
"pin_memory": True,
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def default_collate_fn_closure(tokenizer, tokenize_kwargs) -> Callable:
|
| 43 |
+
def collate_fn(batch: list[str]) -> BatchEncoding:
|
| 44 |
+
return tokenizer(batch, **tokenize_kwargs)
|
| 45 |
+
return collate_fn
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def defaulter(kwd_dict: Optional[Dict], default_dict: Dict) -> Dict:
|
| 49 |
+
return default_dict if kwd_dict is None else {**default_dict, **kwd_dict}
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
@dataclass
|
| 53 |
+
class SequenceClassifierOutputWithPastAndPooler(ModelOutput):
|
| 54 |
+
loss: Optional[torch.FloatTensor] = None
|
| 55 |
+
logits: torch.FloatTensor = None
|
| 56 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
| 57 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 58 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 59 |
+
pooler_output: torch.FloatTensor = None
|
| 60 |
+
|
| 61 |
|
| 62 |
class NLLBLLM2Vec(PreTrainedModel):
|
| 63 |
config_class = NLLBLLM2VecConfig
|
| 64 |
model_type = "nllb-llm2vec"
|
| 65 |
+
_supports_flash_attn_2 = True
|
| 66 |
+
_supports_sdpa = True
|
| 67 |
"""
|
| 68 |
NLLBLLM2Vec model combining NLLB and LLama encoders.
|
| 69 |
|
|
|
|
| 91 |
|
| 92 |
if config is not None:
|
| 93 |
super().__init__(config, *inputs, **kwargs)
|
| 94 |
+
# from_pretrained overwrites this after config instantiation, so we make sure it's correctly set
|
| 95 |
+
config.nllb_config._attn_implementation = config._attn_implementation
|
| 96 |
+
config.llm2vec_config._attn_implementation = config._attn_implementation
|
| 97 |
self.nllb_encoder = nllb_encoder or M2M100Encoder(config.nllb_config)
|
| 98 |
self.llm2vec = llm2vec or LlamaEncoderModel(config.llm2vec_config)
|
| 99 |
self.config = config
|
| 100 |
+
|
| 101 |
else:
|
| 102 |
# Both encoders are provided
|
| 103 |
self.nllb_encoder = cast(M2M100Encoder, nllb_encoder)
|
|
|
|
| 113 |
self.llm2vec.config.hidden_size,
|
| 114 |
bias=False,
|
| 115 |
)
|
| 116 |
+
|
| 117 |
+
# TODO: update this once commit is included
|
| 118 |
+
min_version = "4.46.0"
|
| 119 |
+
if self.config.nllb_config._attn_implementation == "flash_attention_2":
|
| 120 |
+
if version.parse(transformers.__version__) < version.parse(min_version):
|
| 121 |
+
warnings.warn(
|
| 122 |
+
f"Installed transformers version ({transformers.__version__}) never sets NLLB-encoder dropout to `False` with FlashAttention2. See https://github.com/huggingface/transformers/pull/33844 for more info. Consider upgrading to latest to {min_version} or master.",
|
| 123 |
+
UserWarning,
|
| 124 |
+
)
|
| 125 |
|
| 126 |
def forward(
|
| 127 |
self,
|
|
|
|
| 148 |
else:
|
| 149 |
seq_indices, seq_offsets = indices
|
| 150 |
|
| 151 |
+
nllb_outputs = self.nllb_encoder(
|
| 152 |
+
input_ids=input_ids,
|
| 153 |
+
attention_mask=attention_mask,
|
| 154 |
+
)
|
| 155 |
+
nllb_last_hidden_state = nllb_outputs.last_hidden_state
|
| 156 |
+
nllb_last_hidden_state = self.up_proj(nllb_last_hidden_state)
|
|
|
|
|
|
|
| 157 |
outputs = self.llm2vec(
|
| 158 |
inputs_embeds=nllb_last_hidden_state,
|
| 159 |
attention_mask=attention_mask,
|
|
|
|
| 188 |
self,
|
| 189 |
inputs: List[str],
|
| 190 |
src_lang: str = "eng_Latn",
|
| 191 |
+
dataloader_kwargs: Optional[Dict[str, Any]] = None,
|
| 192 |
tokenize_kwargs: Optional[Dict[str, Any]] = None,
|
| 193 |
+
collate_fn_closure: Optional[Callable] = None,
|
| 194 |
) -> torch.Tensor:
|
| 195 |
"""
|
| 196 |
Encode input texts into embeddings.
|
| 197 |
|
| 198 |
Args:
|
| 199 |
inputs (List[str]): List of input texts.
|
| 200 |
+
src_lang (str): Source language code for the tokenizer (default: `"eng_Latn"`).
|
| 201 |
+
dataloader_kwargs (Optional[Dict[str, Any]]): Additional keyword arguments for the dataloader excl. `collate_fn`.
|
| 202 |
+
Defaults to:
|
| 203 |
+
>> dataloader_kwargs = {
|
| 204 |
+
>> "shuffle": False,
|
| 205 |
+
>> "pin_memory": True,
|
| 206 |
+
>> }
|
| 207 |
tokenize_kwargs (Optional[Dict[str, Any]]): Additional keyword arguments for the tokenizer.
|
| 208 |
Defaults to:
|
| 209 |
>> tokenize_kwargs = {
|
|
|
|
| 212 |
>> "max_length": 512,
|
| 213 |
>> "return_tensors": "pt",
|
| 214 |
>> }
|
| 215 |
+
collate_fn_closure (Optional[Callable]): Closure that should return a `collate_fn`.
|
| 216 |
+
Defaults to:
|
| 217 |
+
>> def default_collate_fn_closure(tokenizer, tokenize_kwargs) -> Callable:
|
| 218 |
+
>> def collate_fn(batch: list[str]) -> BatchEncoding:
|
| 219 |
+
>> return tokenizer(batch, **tokenize_kwargs)
|
| 220 |
+
>> return collate_fn
|
| 221 |
Returns:
|
| 222 |
torch.Tensor: Mean-pooled sequence embeddings of the inputs.
|
| 223 |
"""
|
| 224 |
+
# merge user kwargs with defaults, giving priority to user kwargs
|
| 225 |
+
tokenize_kwargs = defaulter(tokenize_kwargs, DEFAULT_TOKENIZE_KWARGS)
|
| 226 |
+
dataloader_kwargs = defaulter(dataloader_kwargs, DEFAULT_DATALOADER_KWARGS)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
tokenizer = self.tokenizer
|
| 229 |
tokenizer.src_lang = src_lang
|
| 230 |
device = next(self.parameters()).device
|
|
|
|
|
|
|
| 231 |
|
| 232 |
+
if collate_fn_closure is None:
|
| 233 |
+
collate_fn = default_collate_fn_closure(tokenizer, tokenize_kwargs)
|
| 234 |
+
else:
|
| 235 |
+
collate_fn = collate_fn_closure(tokenizer, tokenize_kwargs)
|
| 236 |
+
assert (
|
| 237 |
+
"collate_fn" not in dataloader_kwargs
|
| 238 |
+
), "`collate_fn` should be created via `collate_fn_closure`"
|
| 239 |
+
self.eval()
|
| 240 |
+
if len(inputs) > dataloader_kwargs.get("batch_size", 1):
|
| 241 |
+
dataloader = DataLoader(inputs, collate_fn=collate_fn, **dataloader_kwargs) # type: ignore
|
| 242 |
+
all_embeddings = []
|
| 243 |
+
# Iterate through the dataloader with a progress bar and autocast
|
| 244 |
+
with torch.autocast(device_type=device.type, dtype=torch.bfloat16):
|
| 245 |
+
for batch in tqdm(dataloader, desc="Encoding"):
|
| 246 |
+
# Move batch to device
|
| 247 |
+
batch = {k: v.to(device) for k, v in batch.items()}
|
| 248 |
+
# Forward pass through the model (assumes model returns embeddings)
|
| 249 |
+
with torch.inference_mode():
|
| 250 |
+
pooled_embeddings = cast(
|
| 251 |
+
SequenceClassifierOutputWithPastAndPooler, self(**batch)
|
| 252 |
+
).pooler_output # Assuming model returns sequence embeddings
|
| 253 |
+
all_embeddings.append(pooled_embeddings)
|
| 254 |
+
# Concatenate all pooled embeddings along the batch dimension
|
| 255 |
+
all_embeddings = torch.cat(all_embeddings, dim=0)
|
| 256 |
+
else:
|
| 257 |
+
batch = {k: v.to(device) for k, v in collate_fn(inputs)}
|
| 258 |
+
with torch.inference_mode():
|
| 259 |
+
all_embeddings = cast(
|
| 260 |
+
SequenceClassifierOutputWithPastAndPooler, self(**batch)
|
| 261 |
+
).pooler_output # Assuming model returns sequence embeddings
|
| 262 |
+
return all_embeddings
|
| 263 |
|
| 264 |
@staticmethod
|
| 265 |
def _get_input_offsets(
|
|
|
|
| 283 |
non_padded_lengths = attention_mask.sum(
|
| 284 |
dim=1
|
| 285 |
) # Count non-padded tokens per sequence
|
| 286 |
+
offsets = non_padded_lengths.cumsum(dim=0).roll(shifts=1)
|
| 287 |
+
offsets[0] = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
return input_indices, offsets
|
| 289 |
|
| 290 |
@staticmethod
|
|
|
|
| 322 |
config_class = NLLBLLM2VecConfig
|
| 323 |
model_type = "nllb-llm2vec"
|
| 324 |
base_model_prefix = "model"
|
| 325 |
+
_supports_flash_attn_2 = True
|
| 326 |
+
_supports_sdpa = True
|
| 327 |
|
| 328 |
def __init__(self, config):
|
| 329 |
super().__init__(config)
|
| 330 |
self.num_labels = config.num_labels
|
| 331 |
+
|
| 332 |
self.model = NLLBLLM2Vec(config)
|
| 333 |
self.score = nn.Linear(
|
| 334 |
config.llm2vec_config.hidden_size, self.num_labels, bias=False
|
|
|
|
| 337 |
# Initialize weights and apply final processing
|
| 338 |
self.post_init()
|
| 339 |
|
| 340 |
+
def _init_weights(self, module):
|
| 341 |
+
if module is self.score:
|
| 342 |
+
# INFO:
|
| 343 |
+
# - critical that clf head is in float32 (NusaX perf. drops funky otherwise)
|
| 344 |
+
# - Initialization needs to be redone, otherwise borked
|
| 345 |
+
# - Use kaiming uniform, b/c Llama init (cf. `nn.Linear` below) performs worse
|
| 346 |
+
self.score = self.score.to(torch.float32)
|
| 347 |
+
torch.nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5))
|
| 348 |
+
elif isinstance(module, nn.Linear):
|
| 349 |
+
if isinstance(module, nn.Linear):
|
| 350 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 351 |
+
if module.bias is not None:
|
| 352 |
+
module.bias.data.zero_()
|
| 353 |
+
elif isinstance(module, nn.Embedding):
|
| 354 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 355 |
+
if module.padding_idx is not None:
|
| 356 |
+
module.weight.data[module.padding_idx].zero_()
|
| 357 |
+
|
| 358 |
def get_input_embeddings(self):
|
| 359 |
return self.model.nllb.embed_tokens
|
| 360 |
|
| 361 |
def set_input_embeddings(self, value):
|
| 362 |
self.model.nllb.embed_tokens = value
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 363 |
|
| 364 |
def forward(
|
| 365 |
self,
|
|
|
|
| 425 |
output = (pooled_logits,) + transformer_outputs[1:]
|
| 426 |
return ((loss,) + output) if loss is not None else output
|
| 427 |
|
| 428 |
+
return SequenceClassifierOutputWithPastAndPooler(
|
| 429 |
loss=loss,
|
| 430 |
hidden_states=hidden_states,
|
| 431 |
logits=pooled_logits,
|
| 432 |
+
pooler_output=transformer_outputs.pooler_output,
|
| 433 |
+
)
|
| 434 |
+
|
| 435 |
+
|
| 436 |
+
class NLLBLLM2VecForTokenClassification(PreTrainedModel):
|
| 437 |
+
config_class = NLLBLLM2VecConfig
|
| 438 |
+
model_type = "nllb-llm2vec"
|
| 439 |
+
base_model_prefix = "model"
|
| 440 |
+
_supports_flash_attn_2 = True
|
| 441 |
+
_supports_sdpa = True
|
| 442 |
+
|
| 443 |
+
def __init__(self, config: NLLBLLM2VecConfig):
|
| 444 |
+
super().__init__(config)
|
| 445 |
+
self.num_labels = config.num_labels
|
| 446 |
+
|
| 447 |
+
self.model = NLLBLLM2Vec(config)
|
| 448 |
+
self.classifier = nn.Linear(
|
| 449 |
+
config.llm2vec_config.hidden_size, self.num_labels, bias=False
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
# Initialize weights and apply final processing
|
| 453 |
+
self.post_init()
|
| 454 |
+
|
| 455 |
+
def _init_weights(self, module):
|
| 456 |
+
if module is self.classifier:
|
| 457 |
+
# INFO:
|
| 458 |
+
# - critical that clf head is in float32 (NusaX perf. drops funky otherwise)
|
| 459 |
+
# - Initialization needs to be redone, otherwise borked
|
| 460 |
+
# - Use kaiming uniform, b/c Llama init (cf. `nn.Linear` below) performs worse
|
| 461 |
+
self.classifier = self.classifier.to(torch.float32)
|
| 462 |
+
torch.nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5))
|
| 463 |
+
elif isinstance(module, nn.Linear):
|
| 464 |
+
if isinstance(module, nn.Linear):
|
| 465 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 466 |
+
if module.bias is not None:
|
| 467 |
+
module.bias.data.zero_()
|
| 468 |
+
elif isinstance(module, nn.Embedding):
|
| 469 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 470 |
+
if module.padding_idx is not None:
|
| 471 |
+
module.weight.data[module.padding_idx].zero_()
|
| 472 |
+
|
| 473 |
+
def get_input_embeddings(self):
|
| 474 |
+
return self.model.nllb.embed_tokens
|
| 475 |
+
|
| 476 |
+
def set_input_embeddings(self, value):
|
| 477 |
+
self.model.nllb.embed_tokens = value
|
| 478 |
+
|
| 479 |
+
# adapted from transformers.models.roberta.modeling_roberta.RobertaForTokenClassification
|
| 480 |
+
# - removed classifier dropout
|
| 481 |
+
# - use F.cross_entropy
|
| 482 |
+
def forward(
|
| 483 |
+
self,
|
| 484 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 485 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 486 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 487 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 488 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 489 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 490 |
+
labels: Optional[torch.LongTensor] = None,
|
| 491 |
+
output_attentions: Optional[bool] = None,
|
| 492 |
+
output_hidden_states: Optional[bool] = None,
|
| 493 |
+
return_dict: Optional[bool] = None,
|
| 494 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
| 495 |
+
r"""
|
| 496 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 497 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
| 498 |
+
"""
|
| 499 |
+
return_dict = (
|
| 500 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 501 |
+
)
|
| 502 |
+
|
| 503 |
+
outputs = self.model(
|
| 504 |
+
input_ids,
|
| 505 |
+
attention_mask=attention_mask,
|
| 506 |
+
token_type_ids=token_type_ids,
|
| 507 |
+
position_ids=position_ids,
|
| 508 |
+
head_mask=head_mask,
|
| 509 |
+
inputs_embeds=inputs_embeds,
|
| 510 |
+
output_attentions=output_attentions,
|
| 511 |
+
output_hidden_states=output_hidden_states,
|
| 512 |
+
return_dict=return_dict,
|
| 513 |
+
)
|
| 514 |
+
sequence_output = outputs[0]
|
| 515 |
+
logits = self.classifier(sequence_output)
|
| 516 |
+
|
| 517 |
+
loss = None
|
| 518 |
+
if labels is not None:
|
| 519 |
+
# move labels to correct device to enable model parallelism
|
| 520 |
+
labels = labels.to(logits.device)
|
| 521 |
+
loss = F.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))
|
| 522 |
+
|
| 523 |
+
if not return_dict:
|
| 524 |
+
output = (logits,) + outputs[2:]
|
| 525 |
+
return ((loss,) + output) if loss is not None else output
|
| 526 |
+
|
| 527 |
+
return TokenClassifierOutput(
|
| 528 |
+
loss=loss,
|
| 529 |
+
logits=logits,
|
| 530 |
+
hidden_states=outputs.hidden_states,
|
| 531 |
+
attentions=outputs.attentions,
|
| 532 |
)
|
| 533 |
|
| 534 |
|
|
|
|
| 536 |
AutoModelForSequenceClassification.register(
|
| 537 |
NLLBLLM2VecConfig, NLLBLLM2VecForSequenceClassification
|
| 538 |
)
|
| 539 |
+
AutoModelForSequenceClassification.register(
|
| 540 |
+
NLLBLLM2VecConfig, NLLBLLM2VecForTokenClassification
|
| 541 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|