Commit
·
84f0718
1
Parent(s):
b029b75
Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- generated_from_keras_callback
|
| 5 |
+
model-index:
|
| 6 |
+
- name: xmelus/mbert
|
| 7 |
+
results: []
|
| 8 |
+
---
|
| 9 |
+
|
| 10 |
+
This is a model card copied from original Tensorflow model version: https://huggingface.co/fimu-docproc-research/mbert-finetuned
|
| 11 |
+
|
| 12 |
+
# xmelus/mbert
|
| 13 |
+
|
| 14 |
+
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset.
|
| 15 |
+
It achieves the following results on the evaluation set:
|
| 16 |
+
- Train Loss: 1.5424
|
| 17 |
+
- Train Accuracy: 0.1446
|
| 18 |
+
- Validation Loss: 1.5269
|
| 19 |
+
- Validation Accuracy: 0.1461
|
| 20 |
+
- Finished epochs: 24
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
### Training hyperparameters
|
| 24 |
+
|
| 25 |
+
The following hyperparameters were used during training:
|
| 26 |
+
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -596, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
|
| 27 |
+
- training_precision: mixed_float16
|
| 28 |
+
|
| 29 |
+
### Training results
|
| 30 |
+
|
| 31 |
+
Epoch 1/50
|
| 32 |
+
|
| 33 |
+
loss: 2.9925 - accuracy: 0.1059 - val_loss: 1.9812 - val_accuracy: 0.1331
|
| 34 |
+
|
| 35 |
+
Epoch 2/50
|
| 36 |
+
|
| 37 |
+
loss: 1.9979 - accuracy: 0.1307 - val_loss: 1.6063 - val_accuracy: 0.1429
|
| 38 |
+
|
| 39 |
+
Epoch 3/50
|
| 40 |
+
|
| 41 |
+
loss: 1.5798 - accuracy: 0.1434 - val_loss: 1.5332 - val_accuracy: 0.1461
|
| 42 |
+
|
| 43 |
+
Epoch 4/50
|
| 44 |
+
|
| 45 |
+
loss: 1.5325 - accuracy: 0.1451 - val_loss: 1.5285 - val_accuracy: 0.1458
|
| 46 |
+
|
| 47 |
+
Epoch 5/50
|
| 48 |
+
|
| 49 |
+
loss: 1.5415 - accuracy: 0.1448 - val_loss: 1.5449 - val_accuracy: 0.1457
|
| 50 |
+
|
| 51 |
+
Epoch 6/50
|
| 52 |
+
|
| 53 |
+
loss: 1.5395 - accuracy: 0.1448 - val_loss: 1.5448 - val_accuracy: 0.1456
|
| 54 |
+
|
| 55 |
+
Epoch 7/50
|
| 56 |
+
|
| 57 |
+
loss: 1.5463 - accuracy: 0.1446 - val_loss: 1.5421 - val_accuracy: 0.1454
|
| 58 |
+
|
| 59 |
+
Epoch 8/50
|
| 60 |
+
|
| 61 |
+
loss: 1.5352 - accuracy: 0.1451 - val_loss: 1.5536 - val_accuracy: 0.1453
|
| 62 |
+
|
| 63 |
+
Epoch 9/50
|
| 64 |
+
|
| 65 |
+
oss: 1.5230 - accuracy: 0.1451 - val_loss: 1.5097 - val_accuracy: 0.1466
|
| 66 |
+
|
| 67 |
+
Epoch 10/50
|
| 68 |
+
|
| 69 |
+
loss: 1.5318 - accuracy: 0.1449 - val_loss: 1.5303 - val_accuracy: 0.1460
|
| 70 |
+
|
| 71 |
+
Epoch 11/50
|
| 72 |
+
|
| 73 |
+
loss: 1.5364 - accuracy: 0.1448 - val_loss: 1.5280 - val_accuracy: 0.1462
|
| 74 |
+
|
| 75 |
+
Epoch 12/50
|
| 76 |
+
|
| 77 |
+
loss: 1.5411 - accuracy: 0.1444 - val_loss: 1.5493 - val_accuracy: 0.1455
|
| 78 |
+
|
| 79 |
+
Epoch 13/50
|
| 80 |
+
|
| 81 |
+
loss: 1.5378 - accuracy: 0.1446 - val_loss: 1.5473 - val_accuracy: 0.1456
|
| 82 |
+
|
| 83 |
+
Epoch 14/50
|
| 84 |
+
|
| 85 |
+
loss: 1.5357 - accuracy: 0.1449 - val_loss: 1.5310 - val_accuracy: 0.1457
|
| 86 |
+
|
| 87 |
+
Epoch 15/50
|
| 88 |
+
|
| 89 |
+
loss: 1.5424 - accuracy: 0.1446 - val_loss: 1.5269 - val_accuracy: 0.1461
|
| 90 |
+
|
| 91 |
+
Epoch 16/50
|
| 92 |
+
|
| 93 |
+
loss: 1.5314 - accuracy: 0.1450 - val_loss: 1.5392 - val_accuracy: 0.1456
|
| 94 |
+
|
| 95 |
+
Epoch 17/50
|
| 96 |
+
|
| 97 |
+
loss: 1.5309 - accuracy: 0.1451 - val_loss: 1.5567 - val_accuracy: 0.1454
|
| 98 |
+
|
| 99 |
+
Epoch 18/50
|
| 100 |
+
|
| 101 |
+
loss: 1.5279 - accuracy: 0.1450 - val_loss: 1.5561 - val_accuracy: 0.1452
|
| 102 |
+
|
| 103 |
+
Epoch 19/50
|
| 104 |
+
|
| 105 |
+
loss: 1.5311 - accuracy: 0.1450 - val_loss: 1.5400 - val_accuracy: 0.1460
|
| 106 |
+
|
| 107 |
+
Epoch 20/50
|
| 108 |
+
|
| 109 |
+
loss: 1.5332 - accuracy: 0.1449 - val_loss: 1.5347 - val_accuracy: 0.1460
|
| 110 |
+
|
| 111 |
+
Epoch 21/50
|
| 112 |
+
|
| 113 |
+
loss: 1.5319 - accuracy: 0.1452 - val_loss: 1.5410 - val_accuracy: 0.1458
|
| 114 |
+
|
| 115 |
+
Epoch 22/50
|
| 116 |
+
|
| 117 |
+
loss: 1.5327 - accuracy: 0.1449 - val_loss: 1.5352 - val_accuracy: 0.1460
|
| 118 |
+
|
| 119 |
+
Epoch 23/50
|
| 120 |
+
|
| 121 |
+
loss: 1.5278 - accuracy: 0.1451 - val_loss: 1.5289 - val_accuracy: 0.1458
|
| 122 |
+
|
| 123 |
+
Epoch 24/50
|
| 124 |
+
|
| 125 |
+
loss: 1.5234 - accuracy: 0.1451 - val_loss: 1.5568 - val_accuracy: 0.1449
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
### Framework versions
|
| 130 |
+
|
| 131 |
+
- Transformers 4.22.1
|
| 132 |
+
- Torch 1.13.1
|
| 133 |
+
- Datasets 2.5.1
|
| 134 |
+
- Tokenizers 0.12.1
|