--- library_name: peft license: apache-2.0 base_model: allenai/led-base-16384 tags: - generated_from_trainer metrics: - rouge - bleu - precision - recall - f1 model-index: - name: LoRA_LED_all_aspects results: [] --- # LoRA_LED_all_aspects This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.2585 - Rouge1: 0.2961 - Rouge2: 0.1042 - Rougel: 0.234 - Rougelsum: 0.2333 - Gen Len: 29.3933 - Bleu: 0.0577 - Precisions: 0.1023 - Brevity Penalty: 0.9031 - Length Ratio: 0.9075 - Translation Length: 3268.0 - Reference Length: 3601.0 - Precision: 0.8752 - Recall: 0.8737 - F1: 0.8744 - Hashcode: roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | Precision | Recall | F1 | Hashcode | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:------:|:----------:|:---------------:|:------------:|:------------------:|:----------------:|:---------:|:------:|:------:|:---------------------------------------------------------:| | 5.0003 | 1.0 | 38 | 3.3632 | 0.2751 | 0.1031 | 0.2271 | 0.2265 | 26.0267 | 0.0601 | 0.113 | 0.7896 | 0.8089 | 2913.0 | 3601.0 | 0.8795 | 0.8705 | 0.8749 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) | | 3.4616 | 2.0 | 76 | 3.2445 | 0.3023 | 0.104 | 0.237 | 0.2372 | 30.3467 | 0.065 | 0.1086 | 0.9019 | 0.9064 | 3264.0 | 3601.0 | 0.872 | 0.874 | 0.8729 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) | | 3.1933 | 3.0 | 114 | 3.2125 | 0.282 | 0.0998 | 0.2276 | 0.2264 | 29.2733 | 0.0576 | 0.1018 | 0.8859 | 0.892 | 3212.0 | 3601.0 | 0.8732 | 0.8729 | 0.873 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) | | 3.0156 | 4.0 | 152 | 3.2279 | 0.2848 | 0.1012 | 0.2294 | 0.2287 | 28.92 | 0.0611 | 0.1059 | 0.8862 | 0.8923 | 3213.0 | 3601.0 | 0.8769 | 0.8742 | 0.8755 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) | | 2.874 | 5.0 | 190 | 3.2585 | 0.2961 | 0.1042 | 0.234 | 0.2333 | 29.3933 | 0.0577 | 0.1023 | 0.9031 | 0.9075 | 3268.0 | 3601.0 | 0.8752 | 0.8737 | 0.8744 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) | ### Framework versions - PEFT 0.15.2 - Transformers 4.53.1 - Pytorch 2.7.0+cu126 - Datasets 3.6.0 - Tokenizers 0.21.1