Initial commit with folder contents
Browse files- pyproject.toml +29 -0
- src/main.py +50 -0
- src/pipeline.py +47 -0
- uv.lock +0 -0
pyproject.toml
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[build-system]
|
| 2 |
+
requires = ["setuptools >= 75.0"]
|
| 3 |
+
build-backend = "setuptools.build_meta"
|
| 4 |
+
|
| 5 |
+
[project]
|
| 6 |
+
name = "flux-schnell-edge-inference"
|
| 7 |
+
description = "An edge-maxxing model submission for the 4090 Flux contest"
|
| 8 |
+
requires-python = ">=3.10,<3.13"
|
| 9 |
+
version = "8"
|
| 10 |
+
dependencies = [
|
| 11 |
+
"diffusers==0.31.0",
|
| 12 |
+
"transformers==4.46.2",
|
| 13 |
+
"accelerate==1.1.0",
|
| 14 |
+
"omegaconf==2.3.0",
|
| 15 |
+
"torch==2.5.1",
|
| 16 |
+
"protobuf==5.28.3",
|
| 17 |
+
"sentencepiece==0.2.0",
|
| 18 |
+
"torchao==0.6.1",
|
| 19 |
+
"hf_transfer==0.1.8",
|
| 20 |
+
"setuptools==75.2.0",
|
| 21 |
+
"edge-maxxing-pipelines @ git+https://github.com/womboai/edge-maxxing@7c760ac54f6052803dadb3ade8ebfc9679a94589#subdirectory=pipelines",
|
| 22 |
+
]
|
| 23 |
+
|
| 24 |
+
[[tool.edge-maxxing.models]]
|
| 25 |
+
repository = "fringuant/StreamCascade"
|
| 26 |
+
revision = "765016449ab8494685f030a7db03c67600cf4c55"
|
| 27 |
+
|
| 28 |
+
[project.scripts]
|
| 29 |
+
start_inference = "main:main"
|
src/main.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from io import BytesIO
|
| 2 |
+
from multiprocessing.connection import Listener
|
| 3 |
+
from os import chmod, remove
|
| 4 |
+
from os.path import abspath, exists
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
|
| 7 |
+
from PIL.JpegImagePlugin import JpegImageFile
|
| 8 |
+
from pipelines.models import TextToImageRequest
|
| 9 |
+
|
| 10 |
+
from pipeline import load_pipeline, infer
|
| 11 |
+
|
| 12 |
+
SOCKET = abspath(Path(__file__).parent.parent / "inferences.sock")
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def main():
|
| 16 |
+
print(f"Loading pipeline")
|
| 17 |
+
pipeline = load_pipeline()
|
| 18 |
+
|
| 19 |
+
print(f"Pipeline loaded! , creating socket at '{SOCKET}'")
|
| 20 |
+
|
| 21 |
+
if exists(SOCKET):
|
| 22 |
+
remove(SOCKET)
|
| 23 |
+
|
| 24 |
+
with Listener(SOCKET) as listener:
|
| 25 |
+
chmod(SOCKET, 0o777)
|
| 26 |
+
|
| 27 |
+
print(f"Awaiting connections")
|
| 28 |
+
with listener.accept() as connection:
|
| 29 |
+
print(f"Connected")
|
| 30 |
+
|
| 31 |
+
while True:
|
| 32 |
+
try:
|
| 33 |
+
request = TextToImageRequest.model_validate_json(connection.recv_bytes().decode("utf-8"))
|
| 34 |
+
except EOFError:
|
| 35 |
+
print(f"Inference socket exiting")
|
| 36 |
+
|
| 37 |
+
return
|
| 38 |
+
|
| 39 |
+
image = infer(request, pipeline)
|
| 40 |
+
|
| 41 |
+
data = BytesIO()
|
| 42 |
+
image.save(data, format=JpegImageFile.format)
|
| 43 |
+
|
| 44 |
+
packet = data.getvalue()
|
| 45 |
+
|
| 46 |
+
connection.send_bytes(packet)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
if __name__ == '__main__':
|
| 50 |
+
main()
|
src/pipeline.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub.constants import HF_HUB_CACHE
|
| 2 |
+
from diffusers import FluxPipeline
|
| 3 |
+
from PIL.Image import Image
|
| 4 |
+
from pipelines.models import TextToImageRequest
|
| 5 |
+
from torch import Generator
|
| 6 |
+
from diffusers import FluxTransformer2DModel
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import torch._dynamo
|
| 10 |
+
import gc
|
| 11 |
+
import os
|
| 12 |
+
|
| 13 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True"
|
| 14 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "True"
|
| 15 |
+
torch._dynamo.config.suppress_errors = True
|
| 16 |
+
|
| 17 |
+
Pipeline = None
|
| 18 |
+
base_prompt = "insensible, timbale, pothery, electrovital, actinogram, taxis, intracerebellar, centrodesmus"
|
| 19 |
+
|
| 20 |
+
def load_pipeline() -> Pipeline:
|
| 21 |
+
gc.collect()
|
| 22 |
+
torch.cuda.empty_cache()
|
| 23 |
+
torch.cuda.reset_max_memory_allocated()
|
| 24 |
+
torch.cuda.reset_peak_memory_stats()
|
| 25 |
+
|
| 26 |
+
transformer = FluxTransformer2DModel.from_pretrained(os.path.join(HF_HUB_CACHE, "models--fringuant--StreamCascade/snapshots/765016449ab8494685f030a7db03c67600cf4c55/transformer"), torch_dtype=torch.bfloat16, use_safetensors=False)
|
| 27 |
+
pipeline = FluxPipeline.from_pretrained("fringuant/StreamCascade", revision="765016449ab8494685f030a7db03c67600cf4c55", transformer=transformer, local_files_only=True, torch_dtype=torch.bfloat16,)
|
| 28 |
+
pipeline.to("cuda")
|
| 29 |
+
pipeline.vae = torch.compile(pipeline.vae, mode="max-autotune", fullgraph=True, dynamic=True)
|
| 30 |
+
|
| 31 |
+
for idx in range(3):
|
| 32 |
+
pipeline(prompt=base_prompt, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=4, max_sequence_length=256)
|
| 33 |
+
|
| 34 |
+
return pipeline
|
| 35 |
+
|
| 36 |
+
@torch.no_grad()
|
| 37 |
+
def infer(request: TextToImageRequest, pipeline: Pipeline) -> Image:
|
| 38 |
+
prompt = getattr(request, 'prompt', base_prompt)
|
| 39 |
+
return pipeline(
|
| 40 |
+
prompt,
|
| 41 |
+
generator=Generator(pipeline.device).manual_seed(request.seed),
|
| 42 |
+
guidance_scale=6.5,
|
| 43 |
+
num_inference_steps=4,
|
| 44 |
+
max_sequence_length=256,
|
| 45 |
+
height=request.height,
|
| 46 |
+
width=request.width,
|
| 47 |
+
).images[0]
|
uv.lock
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|