tanganke commited on
Commit
77529aa
·
verified ·
1 Parent(s): 912b8a9

Upload folder using huggingface_hub

Browse files
Files changed (4) hide show
  1. README.md +76 -0
  2. config.json +63 -0
  3. model.safetensors +3 -0
  4. preprocessor_config.json +22 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/resnet-152
3
+ library_name: transformers
4
+ tags:
5
+ - fusion-bench
6
+ - merge
7
+ ---
8
+ # Deep Model Fusion
9
+
10
+ Fine-tuned ResNet model on dataset eurosat.
11
+
12
+ ## Models Merged
13
+
14
+ This is a merged model created using [fusion-bench](https://github.com/tanganke/fusion_bench).
15
+
16
+ The following models were included in the merge:
17
+
18
+
19
+
20
+
21
+ ## Configuration
22
+
23
+ The following YAML configuration was used to produce this model:
24
+
25
+ ### Algorithm Configuration
26
+
27
+ ```yaml
28
+ _recursive_: false
29
+ _target_: fusion_bench.method.classification.image_classification_finetune.ImageClassificationFineTuning
30
+ _usage_: null
31
+ _version_: 0.2.25.dev0
32
+ dataloader_kwargs:
33
+ batch_size: 128
34
+ num_workers: 8
35
+ pin_memory: true
36
+ label_smoothing: 0
37
+ lr_scheduler: null
38
+ max_epochs: -1
39
+ max_steps: 4000
40
+ optimizer:
41
+ _target_: torch.optim.SGD
42
+ lr: 0.01
43
+ momentum: 0.9
44
+ weight_decay: 0.0001
45
+ save_interval: 1000
46
+ save_on_train_epoch_end: false
47
+ save_top_k: -1
48
+ training_data_ratio: 0.8
49
+ ```
50
+
51
+ ### Model Pool Configuration
52
+
53
+ ```yaml
54
+ _recursive_: false
55
+ _target_: fusion_bench.modelpool.resnet_for_image_classification.ResNetForImageClassificationPool
56
+ _usage_: null
57
+ _version_: 0.2.25.dev0
58
+ models:
59
+ _pretrained_:
60
+ config_path: microsoft/resnet-152
61
+ dataset_name: eurosat
62
+ pretrained: true
63
+ test_datasets: null
64
+ train_datasets:
65
+ eurosat:
66
+ _target_: datasets.load_dataset
67
+ path: tanganke/eurosat
68
+ split: train
69
+ type: transformers
70
+ val_datasets:
71
+ eurosat:
72
+ _target_: datasets.load_dataset
73
+ path: tanganke/eurosat
74
+ split: test
75
+ ```
76
+
config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "ResNetForImageClassification"
4
+ ],
5
+ "depths": [
6
+ 3,
7
+ 8,
8
+ 36,
9
+ 3
10
+ ],
11
+ "downsample_in_bottleneck": false,
12
+ "downsample_in_first_stage": false,
13
+ "dtype": "float32",
14
+ "embedding_size": 64,
15
+ "hidden_act": "relu",
16
+ "hidden_sizes": [
17
+ 256,
18
+ 512,
19
+ 1024,
20
+ 2048
21
+ ],
22
+ "id2label": {
23
+ "0": "annual crop land",
24
+ "1": "forest",
25
+ "2": "brushland or shrubland",
26
+ "3": "highway or road",
27
+ "4": "industrial buildings or commercial buildings",
28
+ "5": "pasture land",
29
+ "6": "permanent crop land",
30
+ "7": "residential buildings or homes or apartments",
31
+ "8": "river",
32
+ "9": "lake or sea"
33
+ },
34
+ "label2id": {
35
+ "annual crop land": 0,
36
+ "brushland or shrubland": 2,
37
+ "forest": 1,
38
+ "highway or road": 3,
39
+ "industrial buildings or commercial buildings": 4,
40
+ "lake or sea": 9,
41
+ "pasture land": 5,
42
+ "permanent crop land": 6,
43
+ "residential buildings or homes or apartments": 7,
44
+ "river": 8
45
+ },
46
+ "layer_type": "bottleneck",
47
+ "model_type": "resnet",
48
+ "num_channels": 3,
49
+ "out_features": [
50
+ "stage4"
51
+ ],
52
+ "out_indices": [
53
+ 4
54
+ ],
55
+ "stage_names": [
56
+ "stem",
57
+ "stage1",
58
+ "stage2",
59
+ "stage3",
60
+ "stage4"
61
+ ],
62
+ "transformers_version": "4.56.1"
63
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8335be814676ebfccc7593622294876f3cdbf36222377a1bc25d9995e3884263
3
+ size 233387400
preprocessor_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_pct": 0.875,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.485,
8
+ 0.456,
9
+ 0.406
10
+ ],
11
+ "image_processor_type": "ConvNextImageProcessor",
12
+ "image_std": [
13
+ 0.229,
14
+ 0.224,
15
+ 0.225
16
+ ],
17
+ "resample": 3,
18
+ "rescale_factor": 0.00392156862745098,
19
+ "size": {
20
+ "shortest_edge": 224
21
+ }
22
+ }