giggling-squid commited on
Commit
2a50885
·
1 Parent(s): 9c6affd

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 248.03 +/- 22.47
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9a651d5c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9a651d5ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9a651d5d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9a651d5dc0>", "_build": "<function ActorCriticPolicy._build at 0x7f9a651d5e50>", "forward": "<function ActorCriticPolicy.forward at 0x7f9a651d5ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9a651d5f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9a651da040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9a651da0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9a651da160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9a651da1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9a651da280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9a651d8270>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675598907853146376, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABpaPL3DwSi6abEps/9ecDBsaeM6CcLKMwAAgD8AAIA/M2O7O3uwjLpi9Eg9HEtDMUG9B7tSXOgzAACAPwAAgD+anvE835PIPC4n3z07Ciu+PRB9PUA907sAAAAAAAAAADOhmD3+P4M/44j8PROo1L5N0xM+lvIxvQAAAAAAAAAAAKYuvBz5NLzic509MIH4vEeelL3Wu829AACAPwAAgD8Nu7C9qYiEPxBQer6pv/C+3HGfvdpqar0AAAAAAAAAAM30cjyk3h27SHktPPRwpDyq5W485wuNvQAAgD8AAIA/epLQvjKnCT8z4R64FhSjvuGpj77WxS0+AAAAAAAAAADNkGg95T5OPlYnyrtN9Wu+SeWqOmtR8LsAAAAAAAAAAM1S2rxDxSO8p5CkPCbJvDzRnh69RQXkOgAAgD8AAIA/ejNYPlt3nz7QTXC+3gafvhVzjb3aKIK9AAAAAAAAAADAMPO97AXMuxNqWz2pxhO+pz+jO17Dpz4AAIA/AACAP82TnDwJoUY9SmGAPRnEN74DRVS8Mnm6vAAAAAAAAAAA4BRivux/Tj52bkA+B850vtEC3ry2RZ+8AAAAAAAAAAAAohM9Co8ku1+8Eb1Z1mu9NJhRPKiUTT4AAIA/AACAPzOmpbzoc5G809w1t4vkxr0L0LI9RU3ePgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFXR7SWNrb0CUhpRSlIwBbJRNGAGMAXSUR0CfoCfFrEcbdX2UKGgGaAloD0MIrWnecQqhcECUhpRSlGgVTUgBaBZHQJ+gMYJmdy11fZQoaAZoCWgPQwiqYir9BKtwQJSGlFKUaBVNjwFoFkdAn6Ccm0E5hnV9lChoBmgJaA9DCDze5LfoYlFAlIaUUpRoFUu8aBZHQJ+i9HPNVzZ1fZQoaAZoCWgPQwg9tmXAGZJxQJSGlFKUaBVNEQFoFkdAn6MylN1yNnV9lChoBmgJaA9DCOtWz0kvo3BAlIaUUpRoFU0BAWgWR0Cfo87vG6wudX2UKGgGaAloD0MIVvXyO41lckCUhpRSlGgVTTwBaBZHQJ+lA7YChex1fZQoaAZoCWgPQwiw/s9hPr1yQJSGlFKUaBVL+GgWR0CfpmZ26kIpdX2UKGgGaAloD0MIzlSIRyK1cUCUhpRSlGgVTRwBaBZHQJ+mkxrSE151fZQoaAZoCWgPQwiERxtHrFxwQJSGlFKUaBVNgwFoFkdAn6bY9gWrO3V9lChoBmgJaA9DCOwUqwbh4HBAlIaUUpRoFUv+aBZHQJ+nat3fQ8h1fZQoaAZoCWgPQwjHKqVnOqRwQJSGlFKUaBVNHwFoFkdAn6gkjopx3nV9lChoBmgJaA9DCM4avK+KRnBAlIaUUpRoFU04AWgWR0CfqG3bEgnudX2UKGgGaAloD0MINPYlGw9nbUCUhpRSlGgVTS0BaBZHQJ+pOXXyy2R1fZQoaAZoCWgPQwgF3PP86b1vQJSGlFKUaBVNIQFoFkdAn6lUyULUkXV9lChoBmgJaA9DCDNt/8qKcnJAlIaUUpRoFU0vAWgWR0CfqpXSBshxdX2UKGgGaAloD0MItd5vtKN9ckCUhpRSlGgVS/ZoFkdAn6v0wSJ0n3V9lChoBmgJaA9DCLGmsijstHBAlIaUUpRoFUv0aBZHQJ+sIz2vjfh1fZQoaAZoCWgPQwgnZyjuuGZxQJSGlFKUaBVNYQFoFkdAn6z7blA/s3V9lChoBmgJaA9DCOEmo8qwcHJAlIaUUpRoFU2WAWgWR0CfrleeWfK7dX2UKGgGaAloD0MI/wdYq/YUb0CUhpRSlGgVTSsBaBZHQJ+u0fYBeX11fZQoaAZoCWgPQwhb6iCvx2JxQJSGlFKUaBVNFgFoFkdAn687c0tRN3V9lChoBmgJaA9DCGPuWkJ+O3FAlIaUUpRoFU0FAWgWR0CfsDNOM2m6dX2UKGgGaAloD0MIMewwJn25a0CUhpRSlGgVTRIBaBZHQJ+waYSg5BF1fZQoaAZoCWgPQwgv3o/br/FuQJSGlFKUaBVNJQFoFkdAn7DiD/VAiXV9lChoBmgJaA9DCAzlRLvKc3JAlIaUUpRoFU0nAWgWR0CfsbrIo3JgdX2UKGgGaAloD0MIUS/4NGcockCUhpRSlGgVTSQBaBZHQJ+yaLhrFfl1fZQoaAZoCWgPQwiI9NvXQW5wQJSGlFKUaBVNJQFoFkdAn7MmALApKHV9lChoBmgJaA9DCJjaUgd5Rm1AlIaUUpRoFU0oAWgWR0Cfs1SZBsyjdX2UKGgGaAloD0MIYRxcOiYYcUCUhpRSlGgVTR4BaBZHQJ+10pjMFEB1fZQoaAZoCWgPQwi70cd8QJxQQJSGlFKUaBVLt2gWR0CftjJbt7a7dX2UKGgGaAloD0MIsAPnjGi4cECUhpRSlGgVTS8BaBZHQJ+2QZAIIGB1fZQoaAZoCWgPQwjzOuKQTWNxQJSGlFKUaBVNKQFoFkdAn7cGyHEdenV9lChoBmgJaA9DCIRkARM4IW9AlIaUUpRoFU0GAWgWR0CftxvOQhfTdX2UKGgGaAloD0MIxZEHIssickCUhpRSlGgVTRoBaBZHQJ+4QHWz4UN1fZQoaAZoCWgPQwip+Sr5mAxwQJSGlFKUaBVNzwFoFkdAn7qszVMEinV9lChoBmgJaA9DCEikbfwJXnBAlIaUUpRoFU0zAWgWR0CfuwHerMkhdX2UKGgGaAloD0MI+RBUjV4LcECUhpRSlGgVTSIBaBZHQJ+8CdpZfUp1fZQoaAZoCWgPQwgN/+kGCmFeQJSGlFKUaBVN6ANoFkdAn7xO1a4c3nV9lChoBmgJaA9DCDfeHRkr1G9AlIaUUpRoFU0ZAWgWR0CfvK20zCUHdX2UKGgGaAloD0MIBp0QOiiHcECUhpRSlGgVTU0BaBZHQJ+8u7dznzR1fZQoaAZoCWgPQwg9KZMa2hgpQJSGlFKUaBVLy2gWR0Cfv3g3cYZVdX2UKGgGaAloD0MIk8g+yHIDckCUhpRSlGgVTVIBaBZHQJ/AelFc6eZ1fZQoaAZoCWgPQwgomZzamZ9vQJSGlFKUaBVNHwFoFkdAn8HmixmkFnV9lChoBmgJaA9DCBTrVPmeGG1AlIaUUpRoFU0aAWgWR0Cfwip1zQu3dX2UKGgGaAloD0MIMuNtpdf2S0CUhpRSlGgVS+BoFkdAn8I4NutOmHV9lChoBmgJaA9DCLVOXI5X6XBAlIaUUpRoFU0YAWgWR0Cf2fy2x6fKdX2UKGgGaAloD0MI6s4Tz1ldckCUhpRSlGgVTYcBaBZHQJ/aIixFAml1fZQoaAZoCWgPQwieew+X3ABwQJSGlFKUaBVNQAFoFkdAn9qCL2pQ13V9lChoBmgJaA9DCJGcTNwq5nBAlIaUUpRoFU0/AmgWR0Cf28vfj0cwdX2UKGgGaAloD0MIZaa0/pZgcECUhpRSlGgVS/ZoFkdAn92R02cawXV9lChoBmgJaA9DCGnJ42n5t3BAlIaUUpRoFU09AWgWR0Cf3muejEehdX2UKGgGaAloD0MISiandkY+ckCUhpRSlGgVTR0BaBZHQJ/e+/KyOaR1fZQoaAZoCWgPQwjdRC3N7ZVwQJSGlFKUaBVNLAFoFkdAn99D3M6ikHV9lChoBmgJaA9DCJ5flKC/rW5AlIaUUpRoFU03AWgWR0Cf32h/Aj6fdX2UKGgGaAloD0MIlDMUd3zFcUCUhpRSlGgVTVoBaBZHQJ/fr06HTJB1fZQoaAZoCWgPQwiE1VjCWsNyQJSGlFKUaBVNHwFoFkdAn+DgH7gsLHV9lChoBmgJaA9DCODaiZIQ1m5AlIaUUpRoFU0VAWgWR0Cf4Tbp/wy7dX2UKGgGaAloD0MIBFlPrb6qHECUhpRSlGgVS8BoFkdAn+Ix5C4SYnV9lChoBmgJaA9DCMBZSpYTVHBAlIaUUpRoFUv5aBZHQJ/iPO1OTJR1fZQoaAZoCWgPQwjzdoTTgvxwQJSGlFKUaBVL/2gWR0Cf4kShrWRSdX2UKGgGaAloD0MIjSWsjfEYckCUhpRSlGgVTSEBaBZHQJ/inNhVlwt1fZQoaAZoCWgPQwg0aOifoBFwQJSGlFKUaBVNMwFoFkdAn+LwXVLBbnV9lChoBmgJaA9DCOnRVE/mh1hAlIaUUpRoFU3oA2gWR0Cf4x5cTrVwdX2UKGgGaAloD0MIKuRKPcvPcUCUhpRSlGgVTTQBaBZHQJ/jKTmnwXt1fZQoaAZoCWgPQwgZOnZQiX9JQJSGlFKUaBVLwmgWR0Cf5H5Xlr/LdX2UKGgGaAloD0MIRx6ILFIXckCUhpRSlGgVTUwBaBZHQJ/knWEsasJ1fZQoaAZoCWgPQwhmS1ZFOJxyQJSGlFKUaBVNPgFoFkdAn+cFawD/2nV9lChoBmgJaA9DCIY5QZvcT3JAlIaUUpRoFU0jAWgWR0Cf58yYoiLVdX2UKGgGaAloD0MIBDi9i3dhc0CUhpRSlGgVTVkBaBZHQJ/owO/cnE51fZQoaAZoCWgPQwjw37w48f9vQJSGlFKUaBVNOQFoFkdAn+jv9P1tf3V9lChoBmgJaA9DCGWqYFRSH0pAlIaUUpRoFUvQaBZHQJ/pSsS00Fd1fZQoaAZoCWgPQwiw/zo37VZuQJSGlFKUaBVNEQFoFkdAn+lLz06HTXV9lChoBmgJaA9DCIwUysLXk3FAlIaUUpRoFU1qAWgWR0Cf6j/xUedTdX2UKGgGaAloD0MI2zNLAtQycECUhpRSlGgVTQ0BaBZHQJ/qUvqTr3V1fZQoaAZoCWgPQwgvqG+ZU91tQJSGlFKUaBVNDAFoFkdAn+qyYCyQgnV9lChoBmgJaA9DCO19qgqNG3FAlIaUUpRoFU1LAWgWR0Cf6u5YYBNmdX2UKGgGaAloD0MIpivYRjzXcECUhpRSlGgVTQ4BaBZHQJ/rId1dPcl1fZQoaAZoCWgPQwjgopOl1vxSQJSGlFKUaBVLz2gWR0Cf6zUy57PZdX2UKGgGaAloD0MII0kQrgA1cECUhpRSlGgVTS0BaBZHQJ/rRfqoqCp1fZQoaAZoCWgPQwizI9V3PnRwQJSGlFKUaBVNJQFoFkdAn+vhQFcIJXV9lChoBmgJaA9DCNbIrrSM225AlIaUUpRoFUvraBZHQJ/r/RsuWbB1fZQoaAZoCWgPQwi5/If0W39wQJSGlFKUaBVNTwFoFkdAn+wOt4iX6nV9lChoBmgJaA9DCDHT9q8sp29AlIaUUpRoFU0QAWgWR0Cf7uiN83MqdX2UKGgGaAloD0MI8Sprm+JPUECUhpRSlGgVS/1oFkdAn/B7UG3WnXV9lChoBmgJaA9DCMmTpGumd21AlIaUUpRoFU0BAWgWR0Cf8KTcqOLjdX2UKGgGaAloD0MIbazEPOs7ckCUhpRSlGgVTUYBaBZHQJ/xsK5TZQJ1fZQoaAZoCWgPQwjXUGovIt9wQJSGlFKUaBVNLAFoFkdAn/HiI+GGmHV9lChoBmgJaA9DCAzO4O8X/0tAlIaUUpRoFUv1aBZHQJ/yAmUnogV1fZQoaAZoCWgPQwiv6xfsho9vQJSGlFKUaBVNDAFoFkdAn/IQ/5ckdHV9lChoBmgJaA9DCEqaP6b1E3JAlIaUUpRoFU0DAWgWR0Cf8jvhZQpGdX2UKGgGaAloD0MIm8qisItERUCUhpRSlGgVS9ZoFkdAn/JemaYu03V9lChoBmgJaA9DCFx381QH225AlIaUUpRoFU0WAWgWR0Cf8nVOKwY+dX2UKGgGaAloD0MI4c/wZo2LcECUhpRSlGgVTUIBaBZHQJ/yfZ26kIp1fZQoaAZoCWgPQwinWDUIM4FyQJSGlFKUaBVNHQFoFkdAn/MzSThYNnV9lChoBmgJaA9DCPEO8KSFJHBAlIaUUpRoFU0OAWgWR0Cf843fQ8fWdX2UKGgGaAloD0MIG9ZUFkWycECUhpRSlGgVTTMBaBZHQJ/zx8Z1mrd1fZQoaAZoCWgPQwjZtFIIZGtvQJSGlFKUaBVNVAFoFkdAn/V/w7T2FnV9lChoBmgJaA9DCHQK8rNRC3BAlIaUUpRoFU2gAWgWR0Cf9smQKa5PdX2UKGgGaAloD0MIHcu76sGRckCUhpRSlGgVTQwBaBZHQJ/20Kneizt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:746e2d704472dc4d08ad2317b2d60f758449e99860b766dcad0939e063303426
3
+ size 147400
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9a651d5c10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9a651d5ca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9a651d5d30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9a651d5dc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9a651d5e50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9a651d5ee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9a651d5f70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9a651da040>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9a651da0d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9a651da160>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9a651da1f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9a651da280>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f9a651d8270>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1675598907853146376,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABpaPL3DwSi6abEps/9ecDBsaeM6CcLKMwAAgD8AAIA/M2O7O3uwjLpi9Eg9HEtDMUG9B7tSXOgzAACAPwAAgD+anvE835PIPC4n3z07Ciu+PRB9PUA907sAAAAAAAAAADOhmD3+P4M/44j8PROo1L5N0xM+lvIxvQAAAAAAAAAAAKYuvBz5NLzic509MIH4vEeelL3Wu829AACAPwAAgD8Nu7C9qYiEPxBQer6pv/C+3HGfvdpqar0AAAAAAAAAAM30cjyk3h27SHktPPRwpDyq5W485wuNvQAAgD8AAIA/epLQvjKnCT8z4R64FhSjvuGpj77WxS0+AAAAAAAAAADNkGg95T5OPlYnyrtN9Wu+SeWqOmtR8LsAAAAAAAAAAM1S2rxDxSO8p5CkPCbJvDzRnh69RQXkOgAAgD8AAIA/ejNYPlt3nz7QTXC+3gafvhVzjb3aKIK9AAAAAAAAAADAMPO97AXMuxNqWz2pxhO+pz+jO17Dpz4AAIA/AACAP82TnDwJoUY9SmGAPRnEN74DRVS8Mnm6vAAAAAAAAAAA4BRivux/Tj52bkA+B850vtEC3ry2RZ+8AAAAAAAAAAAAohM9Co8ku1+8Eb1Z1mu9NJhRPKiUTT4AAIA/AACAPzOmpbzoc5G809w1t4vkxr0L0LI9RU3ePgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVbhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFXR7SWNrb0CUhpRSlIwBbJRNGAGMAXSUR0CfoCfFrEcbdX2UKGgGaAloD0MIrWnecQqhcECUhpRSlGgVTUgBaBZHQJ+gMYJmdy11fZQoaAZoCWgPQwiqYir9BKtwQJSGlFKUaBVNjwFoFkdAn6Ccm0E5hnV9lChoBmgJaA9DCDze5LfoYlFAlIaUUpRoFUu8aBZHQJ+i9HPNVzZ1fZQoaAZoCWgPQwg9tmXAGZJxQJSGlFKUaBVNEQFoFkdAn6MylN1yNnV9lChoBmgJaA9DCOtWz0kvo3BAlIaUUpRoFU0BAWgWR0Cfo87vG6wudX2UKGgGaAloD0MIVvXyO41lckCUhpRSlGgVTTwBaBZHQJ+lA7YChex1fZQoaAZoCWgPQwiw/s9hPr1yQJSGlFKUaBVL+GgWR0CfpmZ26kIpdX2UKGgGaAloD0MIzlSIRyK1cUCUhpRSlGgVTRwBaBZHQJ+mkxrSE151fZQoaAZoCWgPQwiERxtHrFxwQJSGlFKUaBVNgwFoFkdAn6bY9gWrO3V9lChoBmgJaA9DCOwUqwbh4HBAlIaUUpRoFUv+aBZHQJ+nat3fQ8h1fZQoaAZoCWgPQwjHKqVnOqRwQJSGlFKUaBVNHwFoFkdAn6gkjopx3nV9lChoBmgJaA9DCM4avK+KRnBAlIaUUpRoFU04AWgWR0CfqG3bEgnudX2UKGgGaAloD0MINPYlGw9nbUCUhpRSlGgVTS0BaBZHQJ+pOXXyy2R1fZQoaAZoCWgPQwgF3PP86b1vQJSGlFKUaBVNIQFoFkdAn6lUyULUkXV9lChoBmgJaA9DCDNt/8qKcnJAlIaUUpRoFU0vAWgWR0CfqpXSBshxdX2UKGgGaAloD0MItd5vtKN9ckCUhpRSlGgVS/ZoFkdAn6v0wSJ0n3V9lChoBmgJaA9DCLGmsijstHBAlIaUUpRoFUv0aBZHQJ+sIz2vjfh1fZQoaAZoCWgPQwgnZyjuuGZxQJSGlFKUaBVNYQFoFkdAn6z7blA/s3V9lChoBmgJaA9DCOEmo8qwcHJAlIaUUpRoFU2WAWgWR0CfrleeWfK7dX2UKGgGaAloD0MI/wdYq/YUb0CUhpRSlGgVTSsBaBZHQJ+u0fYBeX11fZQoaAZoCWgPQwhb6iCvx2JxQJSGlFKUaBVNFgFoFkdAn687c0tRN3V9lChoBmgJaA9DCGPuWkJ+O3FAlIaUUpRoFU0FAWgWR0CfsDNOM2m6dX2UKGgGaAloD0MIMewwJn25a0CUhpRSlGgVTRIBaBZHQJ+waYSg5BF1fZQoaAZoCWgPQwgv3o/br/FuQJSGlFKUaBVNJQFoFkdAn7DiD/VAiXV9lChoBmgJaA9DCAzlRLvKc3JAlIaUUpRoFU0nAWgWR0CfsbrIo3JgdX2UKGgGaAloD0MIUS/4NGcockCUhpRSlGgVTSQBaBZHQJ+yaLhrFfl1fZQoaAZoCWgPQwiI9NvXQW5wQJSGlFKUaBVNJQFoFkdAn7MmALApKHV9lChoBmgJaA9DCJjaUgd5Rm1AlIaUUpRoFU0oAWgWR0Cfs1SZBsyjdX2UKGgGaAloD0MIYRxcOiYYcUCUhpRSlGgVTR4BaBZHQJ+10pjMFEB1fZQoaAZoCWgPQwi70cd8QJxQQJSGlFKUaBVLt2gWR0CftjJbt7a7dX2UKGgGaAloD0MIsAPnjGi4cECUhpRSlGgVTS8BaBZHQJ+2QZAIIGB1fZQoaAZoCWgPQwjzOuKQTWNxQJSGlFKUaBVNKQFoFkdAn7cGyHEdenV9lChoBmgJaA9DCIRkARM4IW9AlIaUUpRoFU0GAWgWR0CftxvOQhfTdX2UKGgGaAloD0MIxZEHIssickCUhpRSlGgVTRoBaBZHQJ+4QHWz4UN1fZQoaAZoCWgPQwip+Sr5mAxwQJSGlFKUaBVNzwFoFkdAn7qszVMEinV9lChoBmgJaA9DCEikbfwJXnBAlIaUUpRoFU0zAWgWR0CfuwHerMkhdX2UKGgGaAloD0MI+RBUjV4LcECUhpRSlGgVTSIBaBZHQJ+8CdpZfUp1fZQoaAZoCWgPQwgN/+kGCmFeQJSGlFKUaBVN6ANoFkdAn7xO1a4c3nV9lChoBmgJaA9DCDfeHRkr1G9AlIaUUpRoFU0ZAWgWR0CfvK20zCUHdX2UKGgGaAloD0MIBp0QOiiHcECUhpRSlGgVTU0BaBZHQJ+8u7dznzR1fZQoaAZoCWgPQwg9KZMa2hgpQJSGlFKUaBVLy2gWR0Cfv3g3cYZVdX2UKGgGaAloD0MIk8g+yHIDckCUhpRSlGgVTVIBaBZHQJ/AelFc6eZ1fZQoaAZoCWgPQwgomZzamZ9vQJSGlFKUaBVNHwFoFkdAn8HmixmkFnV9lChoBmgJaA9DCBTrVPmeGG1AlIaUUpRoFU0aAWgWR0Cfwip1zQu3dX2UKGgGaAloD0MIMuNtpdf2S0CUhpRSlGgVS+BoFkdAn8I4NutOmHV9lChoBmgJaA9DCLVOXI5X6XBAlIaUUpRoFU0YAWgWR0Cf2fy2x6fKdX2UKGgGaAloD0MI6s4Tz1ldckCUhpRSlGgVTYcBaBZHQJ/aIixFAml1fZQoaAZoCWgPQwieew+X3ABwQJSGlFKUaBVNQAFoFkdAn9qCL2pQ13V9lChoBmgJaA9DCJGcTNwq5nBAlIaUUpRoFU0/AmgWR0Cf28vfj0cwdX2UKGgGaAloD0MIZaa0/pZgcECUhpRSlGgVS/ZoFkdAn92R02cawXV9lChoBmgJaA9DCGnJ42n5t3BAlIaUUpRoFU09AWgWR0Cf3muejEehdX2UKGgGaAloD0MISiandkY+ckCUhpRSlGgVTR0BaBZHQJ/e+/KyOaR1fZQoaAZoCWgPQwjdRC3N7ZVwQJSGlFKUaBVNLAFoFkdAn99D3M6ikHV9lChoBmgJaA9DCJ5flKC/rW5AlIaUUpRoFU03AWgWR0Cf32h/Aj6fdX2UKGgGaAloD0MIlDMUd3zFcUCUhpRSlGgVTVoBaBZHQJ/fr06HTJB1fZQoaAZoCWgPQwiE1VjCWsNyQJSGlFKUaBVNHwFoFkdAn+DgH7gsLHV9lChoBmgJaA9DCODaiZIQ1m5AlIaUUpRoFU0VAWgWR0Cf4Tbp/wy7dX2UKGgGaAloD0MIBFlPrb6qHECUhpRSlGgVS8BoFkdAn+Ix5C4SYnV9lChoBmgJaA9DCMBZSpYTVHBAlIaUUpRoFUv5aBZHQJ/iPO1OTJR1fZQoaAZoCWgPQwjzdoTTgvxwQJSGlFKUaBVL/2gWR0Cf4kShrWRSdX2UKGgGaAloD0MIjSWsjfEYckCUhpRSlGgVTSEBaBZHQJ/inNhVlwt1fZQoaAZoCWgPQwg0aOifoBFwQJSGlFKUaBVNMwFoFkdAn+LwXVLBbnV9lChoBmgJaA9DCOnRVE/mh1hAlIaUUpRoFU3oA2gWR0Cf4x5cTrVwdX2UKGgGaAloD0MIKuRKPcvPcUCUhpRSlGgVTTQBaBZHQJ/jKTmnwXt1fZQoaAZoCWgPQwgZOnZQiX9JQJSGlFKUaBVLwmgWR0Cf5H5Xlr/LdX2UKGgGaAloD0MIRx6ILFIXckCUhpRSlGgVTUwBaBZHQJ/knWEsasJ1fZQoaAZoCWgPQwhmS1ZFOJxyQJSGlFKUaBVNPgFoFkdAn+cFawD/2nV9lChoBmgJaA9DCIY5QZvcT3JAlIaUUpRoFU0jAWgWR0Cf58yYoiLVdX2UKGgGaAloD0MIBDi9i3dhc0CUhpRSlGgVTVkBaBZHQJ/owO/cnE51fZQoaAZoCWgPQwjw37w48f9vQJSGlFKUaBVNOQFoFkdAn+jv9P1tf3V9lChoBmgJaA9DCGWqYFRSH0pAlIaUUpRoFUvQaBZHQJ/pSsS00Fd1fZQoaAZoCWgPQwiw/zo37VZuQJSGlFKUaBVNEQFoFkdAn+lLz06HTXV9lChoBmgJaA9DCIwUysLXk3FAlIaUUpRoFU1qAWgWR0Cf6j/xUedTdX2UKGgGaAloD0MI2zNLAtQycECUhpRSlGgVTQ0BaBZHQJ/qUvqTr3V1fZQoaAZoCWgPQwgvqG+ZU91tQJSGlFKUaBVNDAFoFkdAn+qyYCyQgnV9lChoBmgJaA9DCO19qgqNG3FAlIaUUpRoFU1LAWgWR0Cf6u5YYBNmdX2UKGgGaAloD0MIpivYRjzXcECUhpRSlGgVTQ4BaBZHQJ/rId1dPcl1fZQoaAZoCWgPQwjgopOl1vxSQJSGlFKUaBVLz2gWR0Cf6zUy57PZdX2UKGgGaAloD0MII0kQrgA1cECUhpRSlGgVTS0BaBZHQJ/rRfqoqCp1fZQoaAZoCWgPQwizI9V3PnRwQJSGlFKUaBVNJQFoFkdAn+vhQFcIJXV9lChoBmgJaA9DCNbIrrSM225AlIaUUpRoFUvraBZHQJ/r/RsuWbB1fZQoaAZoCWgPQwi5/If0W39wQJSGlFKUaBVNTwFoFkdAn+wOt4iX6nV9lChoBmgJaA9DCDHT9q8sp29AlIaUUpRoFU0QAWgWR0Cf7uiN83MqdX2UKGgGaAloD0MI8Sprm+JPUECUhpRSlGgVS/1oFkdAn/B7UG3WnXV9lChoBmgJaA9DCMmTpGumd21AlIaUUpRoFU0BAWgWR0Cf8KTcqOLjdX2UKGgGaAloD0MIbazEPOs7ckCUhpRSlGgVTUYBaBZHQJ/xsK5TZQJ1fZQoaAZoCWgPQwjXUGovIt9wQJSGlFKUaBVNLAFoFkdAn/HiI+GGmHV9lChoBmgJaA9DCAzO4O8X/0tAlIaUUpRoFUv1aBZHQJ/yAmUnogV1fZQoaAZoCWgPQwiv6xfsho9vQJSGlFKUaBVNDAFoFkdAn/IQ/5ckdHV9lChoBmgJaA9DCEqaP6b1E3JAlIaUUpRoFU0DAWgWR0Cf8jvhZQpGdX2UKGgGaAloD0MIm8qisItERUCUhpRSlGgVS9ZoFkdAn/JemaYu03V9lChoBmgJaA9DCFx381QH225AlIaUUpRoFU0WAWgWR0Cf8nVOKwY+dX2UKGgGaAloD0MI4c/wZo2LcECUhpRSlGgVTUIBaBZHQJ/yfZ26kIp1fZQoaAZoCWgPQwinWDUIM4FyQJSGlFKUaBVNHQFoFkdAn/MzSThYNnV9lChoBmgJaA9DCPEO8KSFJHBAlIaUUpRoFU0OAWgWR0Cf843fQ8fWdX2UKGgGaAloD0MIG9ZUFkWycECUhpRSlGgVTTMBaBZHQJ/zx8Z1mrd1fZQoaAZoCWgPQwjZtFIIZGtvQJSGlFKUaBVNVAFoFkdAn/V/w7T2FnV9lChoBmgJaA9DCHQK8rNRC3BAlIaUUpRoFU2gAWgWR0Cf9smQKa5PdX2UKGgGaAloD0MIHcu76sGRckCUhpRSlGgVTQwBaBZHQJ/20Kneizt1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:737f02a4a8bae58e174c65b1eccdc42a5ae961a44a59fcdf75e4333f1ab5b9de
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4492320521069cc438208fb0063a76f6ef21ee2b44b388e9a768f52b7223edb
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (232 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 248.02818075449477, "std_reward": 22.46674360725707, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-05T13:02:54.788173"}