--- library_name: transformers base_model: giux78/zagreus-test-202000 tags: - generated_from_trainer model-index: - name: ale_outputs/opendata-sft-debug results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.9.2` ```yaml # ============= SFT DEBUG (~1M conv) ============= base_model: giux78/zagreus-test-202000 strict: false output_dir: ./ale_outputs/opendata-sft-debug seed: 42 datasets: - path: /leonardo_work/EUHPC_A04_045/training/opendata-1000000 type: chat_template field_messages: conversation roles_to_train: ["assistant"] train_on_eos: turn dataset_prepared_path: ./ale_outputs/dataset_cache/opendata-sft default_system_message: "Sei un assistente utile." chat_template: llama3 sequence_len: 4096 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true optimizer: adamw_torch_fused lr_scheduler: constant_with_warmup # <-- per isolare il comportamento learning_rate: 1.5e-5 warmup_ratio: 0.05 # un po’ più lungo in debug weight_decay: 0.01 max_grad_norm: 1.0 micro_batch_size: 1 gradient_accumulation_steps: 8 # Usa max_steps per “più step” indipendentemente dalla lunghezza effettiva del dataset max_steps: 2000 # ≈ 4x gli step attuali #num_epochs: null # ignora epoche quando max_steps è settato bf16: auto flash_attention: true gradient_checkpointing: true logging_steps: 10 eval_strategy: steps eval_steps: 100 save_strategy: steps save_steps: 200 save_total_limit: 2 val_set_size: 10000 fsdp_config: fsdp_sharding_strategy: FULL_SHARD fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer fsdp_backward_prefetch_policy: BACKWARD_PRE fsdp_state_dict_type: FULL_STATE_DICT special_tokens: pad_token: <|end_of_text|> eos_token: <|end_of_text|> ```

# ale_outputs/opendata-sft-debug This model is a fine-tuned version of [giux78/zagreus-test-202000](https://huggingface.co/giux78/zagreus-test-202000) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4896 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 32 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 24 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0020 | 1 | 3.7876 | | 3.7672 | 0.2011 | 100 | 3.7539 | | 3.7566 | 0.4022 | 200 | 3.7122 | | 3.6864 | 0.6033 | 300 | 3.6783 | | 3.6557 | 0.8044 | 400 | 3.6385 | | 3.6056 | 1.0040 | 500 | 3.6002 | | 3.5705 | 1.2051 | 600 | 3.5707 | | 3.599 | 1.4062 | 700 | 3.5494 | | 3.561 | 1.6073 | 800 | 3.5330 | | 3.5462 | 1.8084 | 900 | 3.5205 | | 3.4593 | 2.0080 | 1000 | 3.5115 | | 3.4559 | 2.2092 | 1100 | 3.5051 | | 3.4954 | 2.4103 | 1200 | 3.5013 | | 3.5144 | 2.6114 | 1300 | 3.4983 | | 3.5199 | 2.8125 | 1400 | 3.4964 | | 3.3811 | 3.0121 | 1500 | 3.4949 | | 3.3811 | 3.2132 | 1600 | 3.4937 | | 3.4178 | 3.4143 | 1700 | 3.4923 | | 3.4667 | 3.6154 | 1800 | 3.4913 | | 3.4475 | 3.8165 | 1900 | 3.4907 | | 3.3144 | 4.0161 | 2000 | 3.4896 | ### Framework versions - Transformers 4.56.2 - Pytorch 2.5.1+cu121 - Datasets 3.5.1 - Tokenizers 0.22.1