Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2_v3.zip +3 -0
- a2c-PandaReachDense-v2_v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2_v3/data +94 -0
- a2c-PandaReachDense-v2_v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2_v3/policy.pth +3 -0
- a2c-PandaReachDense-v2_v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2_v3/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: stable-baselines3
|
| 3 |
+
tags:
|
| 4 |
+
- PandaReachDense-v2
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
+
model-index:
|
| 9 |
+
- name: A2C
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: reinforcement-learning
|
| 13 |
+
name: reinforcement-learning
|
| 14 |
+
dataset:
|
| 15 |
+
name: PandaReachDense-v2
|
| 16 |
+
type: PandaReachDense-v2
|
| 17 |
+
metrics:
|
| 18 |
+
- type: mean_reward
|
| 19 |
+
value: -10.06 +/- 6.01
|
| 20 |
+
name: mean_reward
|
| 21 |
+
verified: false
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
| 25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
| 26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
| 27 |
+
|
| 28 |
+
## Usage (with Stable-baselines3)
|
| 29 |
+
TODO: Add your code
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
from stable_baselines3 import ...
|
| 34 |
+
from huggingface_sb3 import load_from_hub
|
| 35 |
+
|
| 36 |
+
...
|
| 37 |
+
```
|
a2c-PandaReachDense-v2_v3.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:82d0030f24274b70471e1a775225193539154eb5b3a850df2dec983885f337b6
|
| 3 |
+
size 108105
|
a2c-PandaReachDense-v2_v3/_stable_baselines3_version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
1.7.0
|
a2c-PandaReachDense-v2_v3/data
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"policy_class": {
|
| 3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
| 4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
| 5 |
+
"__module__": "stable_baselines3.common.policies",
|
| 6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f07d0f649d0>",
|
| 8 |
+
"__abstractmethods__": "frozenset()",
|
| 9 |
+
"_abc_impl": "<_abc_data object at 0x7f07d0f5bc90>"
|
| 10 |
+
},
|
| 11 |
+
"verbose": 1,
|
| 12 |
+
"policy_kwargs": {
|
| 13 |
+
":type:": "<class 'dict'>",
|
| 14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
| 15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
| 16 |
+
"optimizer_kwargs": {
|
| 17 |
+
"alpha": 0.99,
|
| 18 |
+
"eps": 1e-05,
|
| 19 |
+
"weight_decay": 0
|
| 20 |
+
}
|
| 21 |
+
},
|
| 22 |
+
"observation_space": {
|
| 23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
| 24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
| 25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
| 26 |
+
"_shape": null,
|
| 27 |
+
"dtype": null,
|
| 28 |
+
"_np_random": null
|
| 29 |
+
},
|
| 30 |
+
"action_space": {
|
| 31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
| 32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
| 33 |
+
"dtype": "float32",
|
| 34 |
+
"_shape": [
|
| 35 |
+
3
|
| 36 |
+
],
|
| 37 |
+
"low": "[-1. -1. -1.]",
|
| 38 |
+
"high": "[1. 1. 1.]",
|
| 39 |
+
"bounded_below": "[ True True True]",
|
| 40 |
+
"bounded_above": "[ True True True]",
|
| 41 |
+
"_np_random": null
|
| 42 |
+
},
|
| 43 |
+
"n_envs": 4,
|
| 44 |
+
"num_timesteps": 1000000,
|
| 45 |
+
"_total_timesteps": 1000000,
|
| 46 |
+
"_num_timesteps_at_start": 0,
|
| 47 |
+
"seed": null,
|
| 48 |
+
"action_noise": null,
|
| 49 |
+
"start_time": 1674680581022753082,
|
| 50 |
+
"learning_rate": 0.0007,
|
| 51 |
+
"tensorboard_log": null,
|
| 52 |
+
"lr_schedule": {
|
| 53 |
+
":type:": "<class 'function'>",
|
| 54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
| 55 |
+
},
|
| 56 |
+
"_last_obs": {
|
| 57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
| 58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAoE3uPgChk7s7og4/oE3uPgChk7s7og4/oE3uPgChk7s7og4/oE3uPgChk7s7og4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfaQHv47Qrr+RJy6/iK8TP+4muj+zpa6/IpPDPyYjsD+ejwg/QJzKPpnYuz/5b9i/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACgTe4+AKGTuzuiDj+4XY27yk39uVKbSDugTe4+AKGTuzuiDj+4XY27yk39uVKbSDugTe4+AKGTuzuiDj+4XY27yk39uVKbSDugTe4+AKGTuzuiDj+4XY27yk39uVKbSDuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
| 59 |
+
"achieved_goal": "[[ 0.46543598 -0.00450528 0.55716294]\n [ 0.46543598 -0.00450528 0.55716294]\n [ 0.46543598 -0.00450528 0.55716294]\n [ 0.46543598 -0.00450528 0.55716294]]",
|
| 60 |
+
"desired_goal": "[[-0.52985364 -1.3657396 -0.68029124]\n [ 0.57689714 1.454313 -1.3644317 ]\n [ 1.5279276 1.3760726 0.5334414 ]\n [ 0.39572334 1.4675475 -1.6909171 ]]",
|
| 61 |
+
"observation": "[[ 4.6543598e-01 -4.5052767e-03 5.5716294e-01 -4.3141507e-03\n -4.8313878e-04 3.0610156e-03]\n [ 4.6543598e-01 -4.5052767e-03 5.5716294e-01 -4.3141507e-03\n -4.8313878e-04 3.0610156e-03]\n [ 4.6543598e-01 -4.5052767e-03 5.5716294e-01 -4.3141507e-03\n -4.8313878e-04 3.0610156e-03]\n [ 4.6543598e-01 -4.5052767e-03 5.5716294e-01 -4.3141507e-03\n -4.8313878e-04 3.0610156e-03]]"
|
| 62 |
+
},
|
| 63 |
+
"_last_episode_starts": {
|
| 64 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
| 66 |
+
},
|
| 67 |
+
"_last_original_obs": {
|
| 68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
| 69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAPdi8PF0BQryEHmk+0rQRPrlS8D1mtPg8ovkAPv/t8T2jYSA9qwToPf/nB75lvFU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
| 70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
| 71 |
+
"desired_goal": "[[ 0.02305233 -0.01184115 0.22765547]\n [ 0.14229134 0.11734528 0.03035946]\n [ 0.12595227 0.11812972 0.03915561]\n [ 0.11329015 -0.13272093 0.20872648]]",
|
| 72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
| 73 |
+
},
|
| 74 |
+
"_episode_num": 0,
|
| 75 |
+
"use_sde": false,
|
| 76 |
+
"sde_sample_freq": -1,
|
| 77 |
+
"_current_progress_remaining": 0.0,
|
| 78 |
+
"ep_info_buffer": {
|
| 79 |
+
":type:": "<class 'collections.deque'>",
|
| 80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpaFGIck8GsCUhpRSlIwBbJRLMowBdJRHQKXv16/IsAh1fZQoaAZoCWgPQwjEfHkB9hEcwJSGlFKUaBVLMmgWR0Cl75fATIvKdX2UKGgGaAloD0MIC3pvDAH4IMCUhpRSlGgVSzJoFkdApe9Z+lTFVHV9lChoBmgJaA9DCNC4cCAkWxTAlIaUUpRoFUsyaBZHQKXvGTY/Vy51fZQoaAZoCWgPQwhIp658lo8xwJSGlFKUaBVLMmgWR0Cl8QL2QGOddX2UKGgGaAloD0MI6L6c2a6gF8CUhpRSlGgVSzJoFkdApfDDUNKAa3V9lChoBmgJaA9DCPOTap+OtxnAlIaUUpRoFUsyaBZHQKXwhXJYDDF1fZQoaAZoCWgPQwgQyZBj63kUwJSGlFKUaBVLMmgWR0Cl8ESOinHedX2UKGgGaAloD0MI4nX9gt04IMCUhpRSlGgVSzJoFkdApfIguh9LH3V9lChoBmgJaA9DCDoeM1AZjyzAlIaUUpRoFUsyaBZHQKXx4BbwBo51fZQoaAZoCWgPQwi/Q1GgTyQgwJSGlFKUaBVLMmgWR0Cl8aI3BHkMdX2UKGgGaAloD0MI8db5t8vWJMCUhpRSlGgVSzJoFkdApfFhP69CeHV9lChoBmgJaA9DCKsINxlV/izAlIaUUpRoFUsyaBZHQKXzWNZNfw91fZQoaAZoCWgPQwh1PGagMk4YwJSGlFKUaBVLMmgWR0Cl8xfU4JeFdX2UKGgGaAloD0MIpKXydoTTG8CUhpRSlGgVSzJoFkdApfLau+yquXV9lChoBmgJaA9DCH3NctnodCHAlIaUUpRoFUsyaBZHQKXymgB91EF1fZQoaAZoCWgPQwjVQsnk1B4jwJSGlFKUaBVLMmgWR0Cl9KOqvNeMdX2UKGgGaAloD0MIV+pZEMq7DcCUhpRSlGgVSzJoFkdApfRjYEnss3V9lChoBmgJaA9DCAkyAiocgRTAlIaUUpRoFUsyaBZHQKX0JpcHGCJ1fZQoaAZoCWgPQwhOe0rOiR0OwJSGlFKUaBVLMmgWR0Cl8+ZEc81XdX2UKGgGaAloD0MIDFwea0aGHsCUhpRSlGgVSzJoFkdApfXP9FWn0nV9lChoBmgJaA9DCOlILv8hrSnAlIaUUpRoFUsyaBZHQKX1j1gYxcp1fZQoaAZoCWgPQwhqL6LtmKomwJSGlFKUaBVLMmgWR0Cl9VHim2srdX2UKGgGaAloD0MI/bypSIWRMsCUhpRSlGgVSzJoFkdApfURRO1v23V9lChoBmgJaA9DCEmgwabOIxPAlIaUUpRoFUsyaBZHQKX263rleWx1fZQoaAZoCWgPQwgR4PQu3g8PwJSGlFKUaBVLMmgWR0Cl9qpy6tkndX2UKGgGaAloD0MIbM1WXvJ/HcCUhpRSlGgVSzJoFkdApfZsvmHP/3V9lChoBmgJaA9DCLUZpyGqUBzAlIaUUpRoFUsyaBZHQKX2K7eVLSN1fZQoaAZoCWgPQwg3jliLT8EVwJSGlFKUaBVLMmgWR0Cl+BA8B+4LdX2UKGgGaAloD0MI7nn+tFGNFcCUhpRSlGgVSzJoFkdApffQFvAGjnV9lChoBmgJaA9DCL1SliGODSLAlIaUUpRoFUsyaBZHQKX3kpmVZ9x1fZQoaAZoCWgPQwh4J58e2yIVwJSGlFKUaBVLMmgWR0Cl91G7J4jbdX2UKGgGaAloD0MIt+ulKQIcLMCUhpRSlGgVSzJoFkdApfk3ViF0xXV9lChoBmgJaA9DCGueI/Jd2hrAlIaUUpRoFUsyaBZHQKX49kXk5p91fZQoaAZoCWgPQwhd+MH51HEkwJSGlFKUaBVLMmgWR0Cl+Lhg/keZdX2UKGgGaAloD0MI6BIOvcXzGMCUhpRSlGgVSzJoFkdApfh3WpZOi3V9lChoBmgJaA9DCOo9ldOechrAlIaUUpRoFUsyaBZHQKX6blU6xPh1fZQoaAZoCWgPQwg0MPKyJlYOwJSGlFKUaBVLMmgWR0Cl+i4JNTLodX2UKGgGaAloD0MIuCOcFrw4HcCUhpRSlGgVSzJoFkdApfnwF5fMOnV9lChoBmgJaA9DCMMrSZ7rUyfAlIaUUpRoFUsyaBZHQKX5rzAeq711fZQoaAZoCWgPQwgbvK/KhUoTwJSGlFKUaBVLMmgWR0Cl+3dalk6LdX2UKGgGaAloD0MIP6cgPxthMsCUhpRSlGgVSzJoFkdApfs2rMkhR3V9lChoBmgJaA9DCFESEmkb7xHAlIaUUpRoFUsyaBZHQKX6+OiFj/d1fZQoaAZoCWgPQwgnMQisHPIjwJSGlFKUaBVLMmgWR0Cl+rgj6eoUdX2UKGgGaAloD0MIrDb/rzrCI8CUhpRSlGgVSzJoFkdApfyc8kleGHV9lChoBmgJaA9DCIaPiCmRZBrAlIaUUpRoFUsyaBZHQKX8W/fO2Rd1fZQoaAZoCWgPQwjW477VOgEZwJSGlFKUaBVLMmgWR0Cl/B49Pk7wdX2UKGgGaAloD0MIrg/rjVqxJsCUhpRSlGgVSzJoFkdApfvdbiZOSHV9lChoBmgJaA9DCLOxEvOsdCLAlIaUUpRoFUsyaBZHQKX9w2hIvrZ1fZQoaAZoCWgPQwghAaPLmzMgwJSGlFKUaBVLMmgWR0Cl/YJYcNpedX2UKGgGaAloD0MIyy4YXHPHH8CUhpRSlGgVSzJoFkdApf1EY/FBIHV9lChoBmgJaA9DCDfF46JapBfAlIaUUpRoFUsyaBZHQKX9A1jy4F11fZQoaAZoCWgPQwhE2zF1V4YlwJSGlFKUaBVLMmgWR0Cl/u6ef7JodX2UKGgGaAloD0MIqkca3NbOIMCUhpRSlGgVSzJoFkdApf6t/MGHHnV9lChoBmgJaA9DCIlBYOXQ2iLAlIaUUpRoFUsyaBZHQKX+cSpzcRF1fZQoaAZoCWgPQwjC3O7lPikXwJSGlFKUaBVLMmgWR0Cl/jAoPTXrdX2UKGgGaAloD0MIW3ufqkJzEsCUhpRSlGgVSzJoFkdApf/9lAeJYXV9lChoBmgJaA9DCKPogY/BuhzAlIaUUpRoFUsyaBZHQKX/vJmNBGB1fZQoaAZoCWgPQwgWMIFbd3s1wJSGlFKUaBVLMmgWR0Cl/373Gn4xdX2UKGgGaAloD0MIS+oENBF+IMCUhpRSlGgVSzJoFkdApf89zEJjUnV9lChoBmgJaA9DCNrjhXR4WBTAlIaUUpRoFUsyaBZHQKYA+daMaS91fZQoaAZoCWgPQwg9nStKCREXwJSGlFKUaBVLMmgWR0CmALjtoi9qdX2UKGgGaAloD0MIEvqZet1iIcCUhpRSlGgVSzJoFkdApgB7lT3qRnV9lChoBmgJaA9DCMmSOZZ3tRPAlIaUUpRoFUsyaBZHQKYAOyfthNN1fZQoaAZoCWgPQwjS/3ItWgAVwJSGlFKUaBVLMmgWR0CmAi/V7Qb/dX2UKGgGaAloD0MI51PHKqVXH8CUhpRSlGgVSzJoFkdApgHvLHMlknV9lChoBmgJaA9DCO8cylAVEyvAlIaUUpRoFUsyaBZHQKYBsxD9fkZ1fZQoaAZoCWgPQwj1geSdQ9kVwJSGlFKUaBVLMmgWR0CmAXJEH+qBdX2UKGgGaAloD0MIRL+2fvpvIMCUhpRSlGgVSzJoFkdApgNXlyR0VHV9lChoBmgJaA9DCJOKxtrfyRnAlIaUUpRoFUsyaBZHQKYDFobGWD91fZQoaAZoCWgPQwgMWd3qOakXwJSGlFKUaBVLMmgWR0CmAtjNpudgdX2UKGgGaAloD0MINnUeFf8XI8CUhpRSlGgVSzJoFkdApgKY9TxXn3V9lChoBmgJaA9DCHrjpDDvoRrAlIaUUpRoFUsyaBZHQKYEerKeTV51fZQoaAZoCWgPQwjG98WlKk0SwJSGlFKUaBVLMmgWR0CmBDmwiaAndX2UKGgGaAloD0MItYe9UMB2CsCUhpRSlGgVSzJoFkdApgP8dmxt53V9lChoBmgJaA9DCAkYXd4c7hHAlIaUUpRoFUsyaBZHQKYDu+wkgOl1fZQoaAZoCWgPQwifAfVm1BwXwJSGlFKUaBVLMmgWR0CmBbPo3aSLdX2UKGgGaAloD0MIFZFhFW+UHsCUhpRSlGgVSzJoFkdApgVz83uNP3V9lChoBmgJaA9DCHjy6bEtYxbAlIaUUpRoFUsyaBZHQKYFNkvsZ511fZQoaAZoCWgPQwhCsoAJ3DocwJSGlFKUaBVLMmgWR0CmBPVnM+vAdX2UKGgGaAloD0MIOfBquTNjMMCUhpRSlGgVSzJoFkdApgbuxptaZHV9lChoBmgJaA9DCALyJVRwWB7AlIaUUpRoFUsyaBZHQKYGrcmBvrJ1fZQoaAZoCWgPQwhz9WOT/CgVwJSGlFKUaBVLMmgWR0CmBm/yoXKsdX2UKGgGaAloD0MIpdk8DoNxJ8CUhpRSlGgVSzJoFkdApgYvLNfPX3V9lChoBmgJaA9DCLt+wW7YhhPAlIaUUpRoFUsyaBZHQKYIBO1v2oN1fZQoaAZoCWgPQwgO3IE65YEVwJSGlFKUaBVLMmgWR0CmB8SVv/BFdX2UKGgGaAloD0MIi+JV1jZFGcCUhpRSlGgVSzJoFkdApgeH3Dej23V9lChoBmgJaA9DCMu9wKxQZBDAlIaUUpRoFUsyaBZHQKYHR/lyR0V1fZQoaAZoCWgPQwgO95FbkzYrwJSGlFKUaBVLMmgWR0CmCR/ustCidX2UKGgGaAloD0MI68a7I2MVJcCUhpRSlGgVSzJoFkdApgjfGVAzHnV9lChoBmgJaA9DCOYhUz4EdRvAlIaUUpRoFUsyaBZHQKYIoZmZmZp1fZQoaAZoCWgPQwhtjnObcM8fwJSGlFKUaBVLMmgWR0CmCGDpcHGCdX2UKGgGaAloD0MInfF9cakSMMCUhpRSlGgVSzJoFkdApgo71M/QjXV9lChoBmgJaA9DCK9d2nBYShnAlIaUUpRoFUsyaBZHQKYJ+vkili11fZQoaAZoCWgPQwjz59uCpWorwJSGlFKUaBVLMmgWR0CmCb1i4J/odX2UKGgGaAloD0MIrp/+s+anGcCUhpRSlGgVSzJoFkdApgl8h/y5JHV9lChoBmgJaA9DCMu8Vdeh2hTAlIaUUpRoFUsyaBZHQKYLbx/d69l1fZQoaAZoCWgPQwgyryMO2QASwJSGlFKUaBVLMmgWR0CmCy4w7DEWdX2UKGgGaAloD0MIhpDz/j/GIsCUhpRSlGgVSzJoFkdApgrwd2gWanV9lChoBmgJaA9DCH3MBwQ6IxjAlIaUUpRoFUsyaBZHQKYKsG5+Ytx1ZS4="
|
| 81 |
+
},
|
| 82 |
+
"ep_success_buffer": {
|
| 83 |
+
":type:": "<class 'collections.deque'>",
|
| 84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 85 |
+
},
|
| 86 |
+
"_n_updates": 50000,
|
| 87 |
+
"n_steps": 5,
|
| 88 |
+
"gamma": 0.99,
|
| 89 |
+
"gae_lambda": 1,
|
| 90 |
+
"ent_coef": 0.0,
|
| 91 |
+
"vf_coef": 0.5,
|
| 92 |
+
"max_grad_norm": 0.5,
|
| 93 |
+
"normalize_advantage": false
|
| 94 |
+
}
|
a2c-PandaReachDense-v2_v3/policy.optimizer.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b1545817c1689a340d0773a67f25d1e35998fd9187fb3a034ba04712b5432383
|
| 3 |
+
size 44734
|
a2c-PandaReachDense-v2_v3/policy.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cc1036309f5c8d58bd9482ee6d620649b28b25f6249ff53f5c46856f44c5a118
|
| 3 |
+
size 46014
|
a2c-PandaReachDense-v2_v3/pytorch_variables.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
| 3 |
+
size 431
|
a2c-PandaReachDense-v2_v3/system_info.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
| 2 |
+
- Python: 3.8.10
|
| 3 |
+
- Stable-Baselines3: 1.7.0
|
| 4 |
+
- PyTorch: 1.13.1+cu116
|
| 5 |
+
- GPU Enabled: True
|
| 6 |
+
- Numpy: 1.21.6
|
| 7 |
+
- Gym: 0.21.0
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f07d0f649d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f07d0f5bc90>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674680581022753082, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAoE3uPgChk7s7og4/oE3uPgChk7s7og4/oE3uPgChk7s7og4/oE3uPgChk7s7og4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfaQHv47Qrr+RJy6/iK8TP+4muj+zpa6/IpPDPyYjsD+ejwg/QJzKPpnYuz/5b9i/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACgTe4+AKGTuzuiDj+4XY27yk39uVKbSDugTe4+AKGTuzuiDj+4XY27yk39uVKbSDugTe4+AKGTuzuiDj+4XY27yk39uVKbSDugTe4+AKGTuzuiDj+4XY27yk39uVKbSDuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.46543598 -0.00450528 0.55716294]\n [ 0.46543598 -0.00450528 0.55716294]\n [ 0.46543598 -0.00450528 0.55716294]\n [ 0.46543598 -0.00450528 0.55716294]]", "desired_goal": "[[-0.52985364 -1.3657396 -0.68029124]\n [ 0.57689714 1.454313 -1.3644317 ]\n [ 1.5279276 1.3760726 0.5334414 ]\n [ 0.39572334 1.4675475 -1.6909171 ]]", "observation": "[[ 4.6543598e-01 -4.5052767e-03 5.5716294e-01 -4.3141507e-03\n -4.8313878e-04 3.0610156e-03]\n [ 4.6543598e-01 -4.5052767e-03 5.5716294e-01 -4.3141507e-03\n -4.8313878e-04 3.0610156e-03]\n [ 4.6543598e-01 -4.5052767e-03 5.5716294e-01 -4.3141507e-03\n -4.8313878e-04 3.0610156e-03]\n [ 4.6543598e-01 -4.5052767e-03 5.5716294e-01 -4.3141507e-03\n -4.8313878e-04 3.0610156e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAPdi8PF0BQryEHmk+0rQRPrlS8D1mtPg8ovkAPv/t8T2jYSA9qwToPf/nB75lvFU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02305233 -0.01184115 0.22765547]\n [ 0.14229134 0.11734528 0.03035946]\n [ 0.12595227 0.11812972 0.03915561]\n [ 0.11329015 -0.13272093 0.20872648]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpaFGIck8GsCUhpRSlIwBbJRLMowBdJRHQKXv16/IsAh1fZQoaAZoCWgPQwjEfHkB9hEcwJSGlFKUaBVLMmgWR0Cl75fATIvKdX2UKGgGaAloD0MIC3pvDAH4IMCUhpRSlGgVSzJoFkdApe9Z+lTFVHV9lChoBmgJaA9DCNC4cCAkWxTAlIaUUpRoFUsyaBZHQKXvGTY/Vy51fZQoaAZoCWgPQwhIp658lo8xwJSGlFKUaBVLMmgWR0Cl8QL2QGOddX2UKGgGaAloD0MI6L6c2a6gF8CUhpRSlGgVSzJoFkdApfDDUNKAa3V9lChoBmgJaA9DCPOTap+OtxnAlIaUUpRoFUsyaBZHQKXwhXJYDDF1fZQoaAZoCWgPQwgQyZBj63kUwJSGlFKUaBVLMmgWR0Cl8ESOinHedX2UKGgGaAloD0MI4nX9gt04IMCUhpRSlGgVSzJoFkdApfIguh9LH3V9lChoBmgJaA9DCDoeM1AZjyzAlIaUUpRoFUsyaBZHQKXx4BbwBo51fZQoaAZoCWgPQwi/Q1GgTyQgwJSGlFKUaBVLMmgWR0Cl8aI3BHkMdX2UKGgGaAloD0MI8db5t8vWJMCUhpRSlGgVSzJoFkdApfFhP69CeHV9lChoBmgJaA9DCKsINxlV/izAlIaUUpRoFUsyaBZHQKXzWNZNfw91fZQoaAZoCWgPQwh1PGagMk4YwJSGlFKUaBVLMmgWR0Cl8xfU4JeFdX2UKGgGaAloD0MIpKXydoTTG8CUhpRSlGgVSzJoFkdApfLau+yquXV9lChoBmgJaA9DCH3NctnodCHAlIaUUpRoFUsyaBZHQKXymgB91EF1fZQoaAZoCWgPQwjVQsnk1B4jwJSGlFKUaBVLMmgWR0Cl9KOqvNeMdX2UKGgGaAloD0MIV+pZEMq7DcCUhpRSlGgVSzJoFkdApfRjYEnss3V9lChoBmgJaA9DCAkyAiocgRTAlIaUUpRoFUsyaBZHQKX0JpcHGCJ1fZQoaAZoCWgPQwhOe0rOiR0OwJSGlFKUaBVLMmgWR0Cl8+ZEc81XdX2UKGgGaAloD0MIDFwea0aGHsCUhpRSlGgVSzJoFkdApfXP9FWn0nV9lChoBmgJaA9DCOlILv8hrSnAlIaUUpRoFUsyaBZHQKX1j1gYxcp1fZQoaAZoCWgPQwhqL6LtmKomwJSGlFKUaBVLMmgWR0Cl9VHim2srdX2UKGgGaAloD0MI/bypSIWRMsCUhpRSlGgVSzJoFkdApfURRO1v23V9lChoBmgJaA9DCEmgwabOIxPAlIaUUpRoFUsyaBZHQKX263rleWx1fZQoaAZoCWgPQwgR4PQu3g8PwJSGlFKUaBVLMmgWR0Cl9qpy6tkndX2UKGgGaAloD0MIbM1WXvJ/HcCUhpRSlGgVSzJoFkdApfZsvmHP/3V9lChoBmgJaA9DCLUZpyGqUBzAlIaUUpRoFUsyaBZHQKX2K7eVLSN1fZQoaAZoCWgPQwg3jliLT8EVwJSGlFKUaBVLMmgWR0Cl+BA8B+4LdX2UKGgGaAloD0MI7nn+tFGNFcCUhpRSlGgVSzJoFkdApffQFvAGjnV9lChoBmgJaA9DCL1SliGODSLAlIaUUpRoFUsyaBZHQKX3kpmVZ9x1fZQoaAZoCWgPQwh4J58e2yIVwJSGlFKUaBVLMmgWR0Cl91G7J4jbdX2UKGgGaAloD0MIt+ulKQIcLMCUhpRSlGgVSzJoFkdApfk3ViF0xXV9lChoBmgJaA9DCGueI/Jd2hrAlIaUUpRoFUsyaBZHQKX49kXk5p91fZQoaAZoCWgPQwhd+MH51HEkwJSGlFKUaBVLMmgWR0Cl+Lhg/keZdX2UKGgGaAloD0MI6BIOvcXzGMCUhpRSlGgVSzJoFkdApfh3WpZOi3V9lChoBmgJaA9DCOo9ldOechrAlIaUUpRoFUsyaBZHQKX6blU6xPh1fZQoaAZoCWgPQwg0MPKyJlYOwJSGlFKUaBVLMmgWR0Cl+i4JNTLodX2UKGgGaAloD0MIuCOcFrw4HcCUhpRSlGgVSzJoFkdApfnwF5fMOnV9lChoBmgJaA9DCMMrSZ7rUyfAlIaUUpRoFUsyaBZHQKX5rzAeq711fZQoaAZoCWgPQwgbvK/KhUoTwJSGlFKUaBVLMmgWR0Cl+3dalk6LdX2UKGgGaAloD0MIP6cgPxthMsCUhpRSlGgVSzJoFkdApfs2rMkhR3V9lChoBmgJaA9DCFESEmkb7xHAlIaUUpRoFUsyaBZHQKX6+OiFj/d1fZQoaAZoCWgPQwgnMQisHPIjwJSGlFKUaBVLMmgWR0Cl+rgj6eoUdX2UKGgGaAloD0MIrDb/rzrCI8CUhpRSlGgVSzJoFkdApfyc8kleGHV9lChoBmgJaA9DCIaPiCmRZBrAlIaUUpRoFUsyaBZHQKX8W/fO2Rd1fZQoaAZoCWgPQwjW477VOgEZwJSGlFKUaBVLMmgWR0Cl/B49Pk7wdX2UKGgGaAloD0MIrg/rjVqxJsCUhpRSlGgVSzJoFkdApfvdbiZOSHV9lChoBmgJaA9DCLOxEvOsdCLAlIaUUpRoFUsyaBZHQKX9w2hIvrZ1fZQoaAZoCWgPQwghAaPLmzMgwJSGlFKUaBVLMmgWR0Cl/YJYcNpedX2UKGgGaAloD0MIyy4YXHPHH8CUhpRSlGgVSzJoFkdApf1EY/FBIHV9lChoBmgJaA9DCDfF46JapBfAlIaUUpRoFUsyaBZHQKX9A1jy4F11fZQoaAZoCWgPQwhE2zF1V4YlwJSGlFKUaBVLMmgWR0Cl/u6ef7JodX2UKGgGaAloD0MIqkca3NbOIMCUhpRSlGgVSzJoFkdApf6t/MGHHnV9lChoBmgJaA9DCIlBYOXQ2iLAlIaUUpRoFUsyaBZHQKX+cSpzcRF1fZQoaAZoCWgPQwjC3O7lPikXwJSGlFKUaBVLMmgWR0Cl/jAoPTXrdX2UKGgGaAloD0MIW3ufqkJzEsCUhpRSlGgVSzJoFkdApf/9lAeJYXV9lChoBmgJaA9DCKPogY/BuhzAlIaUUpRoFUsyaBZHQKX/vJmNBGB1fZQoaAZoCWgPQwgWMIFbd3s1wJSGlFKUaBVLMmgWR0Cl/373Gn4xdX2UKGgGaAloD0MIS+oENBF+IMCUhpRSlGgVSzJoFkdApf89zEJjUnV9lChoBmgJaA9DCNrjhXR4WBTAlIaUUpRoFUsyaBZHQKYA+daMaS91fZQoaAZoCWgPQwg9nStKCREXwJSGlFKUaBVLMmgWR0CmALjtoi9qdX2UKGgGaAloD0MIEvqZet1iIcCUhpRSlGgVSzJoFkdApgB7lT3qRnV9lChoBmgJaA9DCMmSOZZ3tRPAlIaUUpRoFUsyaBZHQKYAOyfthNN1fZQoaAZoCWgPQwjS/3ItWgAVwJSGlFKUaBVLMmgWR0CmAi/V7Qb/dX2UKGgGaAloD0MI51PHKqVXH8CUhpRSlGgVSzJoFkdApgHvLHMlknV9lChoBmgJaA9DCO8cylAVEyvAlIaUUpRoFUsyaBZHQKYBsxD9fkZ1fZQoaAZoCWgPQwj1geSdQ9kVwJSGlFKUaBVLMmgWR0CmAXJEH+qBdX2UKGgGaAloD0MIRL+2fvpvIMCUhpRSlGgVSzJoFkdApgNXlyR0VHV9lChoBmgJaA9DCJOKxtrfyRnAlIaUUpRoFUsyaBZHQKYDFobGWD91fZQoaAZoCWgPQwgMWd3qOakXwJSGlFKUaBVLMmgWR0CmAtjNpudgdX2UKGgGaAloD0MINnUeFf8XI8CUhpRSlGgVSzJoFkdApgKY9TxXn3V9lChoBmgJaA9DCHrjpDDvoRrAlIaUUpRoFUsyaBZHQKYEerKeTV51fZQoaAZoCWgPQwjG98WlKk0SwJSGlFKUaBVLMmgWR0CmBDmwiaAndX2UKGgGaAloD0MItYe9UMB2CsCUhpRSlGgVSzJoFkdApgP8dmxt53V9lChoBmgJaA9DCAkYXd4c7hHAlIaUUpRoFUsyaBZHQKYDu+wkgOl1fZQoaAZoCWgPQwifAfVm1BwXwJSGlFKUaBVLMmgWR0CmBbPo3aSLdX2UKGgGaAloD0MIFZFhFW+UHsCUhpRSlGgVSzJoFkdApgVz83uNP3V9lChoBmgJaA9DCHjy6bEtYxbAlIaUUpRoFUsyaBZHQKYFNkvsZ511fZQoaAZoCWgPQwhCsoAJ3DocwJSGlFKUaBVLMmgWR0CmBPVnM+vAdX2UKGgGaAloD0MIOfBquTNjMMCUhpRSlGgVSzJoFkdApgbuxptaZHV9lChoBmgJaA9DCALyJVRwWB7AlIaUUpRoFUsyaBZHQKYGrcmBvrJ1fZQoaAZoCWgPQwhz9WOT/CgVwJSGlFKUaBVLMmgWR0CmBm/yoXKsdX2UKGgGaAloD0MIpdk8DoNxJ8CUhpRSlGgVSzJoFkdApgYvLNfPX3V9lChoBmgJaA9DCLt+wW7YhhPAlIaUUpRoFUsyaBZHQKYIBO1v2oN1fZQoaAZoCWgPQwgO3IE65YEVwJSGlFKUaBVLMmgWR0CmB8SVv/BFdX2UKGgGaAloD0MIi+JV1jZFGcCUhpRSlGgVSzJoFkdApgeH3Dej23V9lChoBmgJaA9DCMu9wKxQZBDAlIaUUpRoFUsyaBZHQKYHR/lyR0V1fZQoaAZoCWgPQwgO95FbkzYrwJSGlFKUaBVLMmgWR0CmCR/ustCidX2UKGgGaAloD0MI68a7I2MVJcCUhpRSlGgVSzJoFkdApgjfGVAzHnV9lChoBmgJaA9DCOYhUz4EdRvAlIaUUpRoFUsyaBZHQKYIoZmZmZp1fZQoaAZoCWgPQwhtjnObcM8fwJSGlFKUaBVLMmgWR0CmCGDpcHGCdX2UKGgGaAloD0MInfF9cakSMMCUhpRSlGgVSzJoFkdApgo71M/QjXV9lChoBmgJaA9DCK9d2nBYShnAlIaUUpRoFUsyaBZHQKYJ+vkili11fZQoaAZoCWgPQwjz59uCpWorwJSGlFKUaBVLMmgWR0CmCb1i4J/odX2UKGgGaAloD0MIrp/+s+anGcCUhpRSlGgVSzJoFkdApgl8h/y5JHV9lChoBmgJaA9DCMu8Vdeh2hTAlIaUUpRoFUsyaBZHQKYLbx/d69l1fZQoaAZoCWgPQwgyryMO2QASwJSGlFKUaBVLMmgWR0CmCy4w7DEWdX2UKGgGaAloD0MIhpDz/j/GIsCUhpRSlGgVSzJoFkdApgrwd2gWanV9lChoBmgJaA9DCH3MBwQ6IxjAlIaUUpRoFUsyaBZHQKYKsG5+Ytx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
|
Binary file (752 kB). View file
|
|
|
results.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"mean_reward": -10.05730762211606, "std_reward": 6.006239235664694, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-25T21:51:19.277652"}
|
vec_normalize.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ec31877b6ca7d9b35a7876b220b075d6067c45b54965cb29fa4ed242c6637e06
|
| 3 |
+
size 3056
|