Update README.md
Browse files
README.md
CHANGED
|
@@ -7,4 +7,112 @@ language:
|
|
| 7 |
base_model:
|
| 8 |
- LiquidAI/LFM2-1.2B
|
| 9 |
pipeline_tag: text-generation
|
| 10 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
base_model:
|
| 8 |
- LiquidAI/LFM2-1.2B
|
| 9 |
pipeline_tag: text-generation
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# Hala: Arabic‑Centric Instruction & Translation Models
|
| 13 |
+
|
| 14 |
+
<p align="center">
|
| 15 |
+
<img src="https://i.ibb.co/pvhp1XfJ/halalogo.png" alt="Hala logo" width="550" />
|
| 16 |
+
</p>
|
| 17 |
+
|
| 18 |
+
**Paper**: *Hala Technical Report: Building Arabic‑Centric Instruction & Translation Models at Scale*
|
| 19 |
+
|
| 20 |
+
**Authors**: Hasan Abed Al Kader Hammoud\*, Mohammad Zbeeb\*, Bernard Ghanem
|
| 21 |
+
|
| 22 |
+
**Affiliation**: King Abdullah University of Science and Technology (KAUST)
|
| 23 |
+
|
| 24 |
+
\*Equal contribution
|
| 25 |
+
|
| 26 |
+
> In Arabic, **حلا** (Hala) conveys sweetness and beauty—qualities long associated with the language itself. In this spirit, we call our models **Hala**.
|
| 27 |
+
|
| 28 |
+
---
|
| 29 |
+
|
| 30 |
+
## 🔗 Quick Links
|
| 31 |
+
|
| 32 |
+
* **Models & Data (Hugging Face collection)**: [https://huggingface.co/collections/hammh0a/hala-68bf02b34a14b9f22305ab3a](https://huggingface.co/collections/hammh0a/hala-68bf02b34a14b9f22305ab3a)
|
| 33 |
+
* **Contact**: [[email protected]](mailto:[email protected])
|
| 34 |
+
|
| 35 |
+
---
|
| 36 |
+
|
| 37 |
+
## Example
|
| 38 |
+
|
| 39 |
+
```python
|
| 40 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 41 |
+
|
| 42 |
+
model_id = "hammh0a/Hala-1.2B" # pick a released Hala model
|
| 43 |
+
|
| 44 |
+
tok = AutoTokenizer.from_pretrained(model_id)
|
| 45 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 46 |
+
model_id, torch_dtype="auto", device_map="auto"
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
# Use chat template
|
| 50 |
+
messages = [
|
| 51 |
+
{"role": "system", "content": "أنت مساعد خبير في الفيزياء."},
|
| 52 |
+
{"role": "user", "content": "اشرح بإيجاز مبدأ الانحفاظ في الفيزياء، وأعطني مثالاً يومياً."},
|
| 53 |
+
]
|
| 54 |
+
|
| 55 |
+
prompt = tok.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 56 |
+
|
| 57 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tok)
|
| 58 |
+
out = pipe(prompt, max_new_tokens=256, do_sample=False)
|
| 59 |
+
|
| 60 |
+
print(out[0]["generated_text"])
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
---
|
| 64 |
+
|
| 65 |
+
## 📊 Results (Merged Benchmark Summary)
|
| 66 |
+
|
| 67 |
+
*Hala models are placed at the end of each size category; best **Average** per category is in bold.*
|
| 68 |
+
|
| 69 |
+
### ≤2B parameters
|
| 70 |
+
|
| 71 |
+
| Size | Model Name | Params | AlGhafa | ArabicMMLU | EXAMS | MadinahQA | AraTrust | ArbMMLU‑HT | Average |
|
| 72 |
+
| ---- | -------------------------------------- | -----: | ------: | ---------: | ----: | --------: | -------: | ---------: | -------: |
|
| 73 |
+
| ≤2B | meta-llama/Llama-3.2-1B | 1B | 33.9 | 26.5 | 21.2 | 25.7 | 37.1 | 23.9 | 28.0 |
|
| 74 |
+
| ≤2B | Qwen/Qwen2-1.5B-Instruct | 1.5B | 53.1 | 49.2 | 35.2 | 45.5 | 68.9 | 37.4 | 48.2 |
|
| 75 |
+
| ≤2B | Qwen/Qwen2.5-1.5B-Instruct | 1.5B | 48.4 | 43.5 | 31.8 | 38.2 | 70.8 | 35.9 | 44.8 |
|
| 76 |
+
| ≤2B | Sakalti/Saka-1.5B | 1.5B | 51.4 | 40.0 | 31.3 | 31.5 | 47.5 | 33.5 | 39.2 |
|
| 77 |
+
| ≤2B | Qwen/Qwen3-1.7B-Base | 1.7B | 56.8 | 49.7 | 38.2 | 40.0 | 75.6 | 43.9 | 50.7 |
|
| 78 |
+
| ≤2B | Qwen/Qwen1.5-1.8B | 1.8B | 32.7 | 26.7 | 23.8 | 26.0 | 31.5 | 23.6 | 27.4 |
|
| 79 |
+
| ≤2B | silma-ai/SILMA-Kashif-2B-Instruct-v1.0 | 2B | 59.7 | 45.6 | 33.1 | 38.8 | 73.3 | 35.8 | 47.7 |
|
| 80 |
+
| ≤2B | google/gemma-2-2b-it | 2B | 34.1 | 30.1 | 23.6 | 20.1 | 31.2 | 23.4 | 27.1 |
|
| 81 |
+
| ≤2B | LiquidAI/LFM2-350M | 350M | 39.0 | 35.2 | 30.9 | 28.3 | 43.3 | 29.1 | 34.3 |
|
| 82 |
+
| ≤2B | **Hala‑350M** | 350M | 51.4 | 41.2 | 36.9 | 34.5 | 52.1 | 35.4 | 41.9 |
|
| 83 |
+
| ≤2B | LiquidAI/LFM2-700M | 700M | 50.1 | 38.3 | 34.3 | 32.5 | 56.3 | 37.2 | 41.4 |
|
| 84 |
+
| ≤2B | **Hala‑700M** | 700M | 55.5 | 45.9 | 40.6 | 34.7 | 65.2 | 39.4 | 46.9 |
|
| 85 |
+
| ≤2B | LiquidAI/LFM2-1.2B | 1.2B | 53.8 | 45.2 | 35.0 | 34.7 | 65.6 | 43.4 | 46.3 |
|
| 86 |
+
| ≤2B | **Hala‑1.2B** | 1.2B | 59.2 | 48.6 | 43.4 | 41.6 | 71.7 | 44.2 | **51.4** |
|
| 87 |
+
|
| 88 |
+
### 7B–9B parameters
|
| 89 |
+
|
| 90 |
+
| Size | Model Name | Params | AlGhafa | ArabicMMLU | EXAMS | MadinahQA | AraTrust | ArbMMLU‑HT | Average |
|
| 91 |
+
| ----- | ------------------------------------------- | -----: | ------: | ---------: | ----: | --------: | -------: | ---------: | -------: |
|
| 92 |
+
| 7B–9B | CohereForAI/c4ai-command-r7b-arabic-02-2025 | 7B | 74.8 | 59.3 | 65.0 | 63.8 | 80.5 | 50.1 | 65.6 |
|
| 93 |
+
| 7B–9B | JasperV13/Yehia-7B-DPO-Reasoning-preview | 7B | 75.1 | 66.3 | 51.8 | 54.9 | 81.9 | 55.1 | 64.2 |
|
| 94 |
+
| 7B–9B | Navid-AI/Yehia-7B-preview | 7B | 70.8 | 64.9 | 52.1 | 54.4 | 87.5 | 53.4 | 63.9 |
|
| 95 |
+
| 7B–9B | JasperV13/Yehia-7B-Reasoning-preview | 7B | 75.2 | 66.3 | 52.7 | 55.0 | 80.8 | 55.2 | 64.2 |
|
| 96 |
+
| 7B–9B | ALLaM-AI/ALLaM-7B-Instruct-preview | 7B | 69.5 | 64.9 | 51.6 | 54.2 | 86.9 | 52.8 | 63.3 |
|
| 97 |
+
| 7B–9B | Qwen/Qwen2-7B-Instruct | 7B | 73.2 | 60.0 | 47.3 | 59.5 | 82.8 | 51.3 | 62.4 |
|
| 98 |
+
| 7B–9B | Qwen/Qwen3-8B-Base | 8B | 74.8 | 65.0 | 52.5 | 52.2 | 83.4 | 61.5 | 64.9 |
|
| 99 |
+
| 7B–9B | QCRI/Fanar-1-9B-Instruct | 9B | 76.4 | 65.8 | 52.7 | 73.3 | 88.3 | 58.6 | 69.2 |
|
| 100 |
+
| 7B–9B | **Hala‑9B** | 9B | 78.3 | 65.6 | 53.8 | 70.4 | 89.6 | 61.4 | **69.9** |
|
| 101 |
+
|
| 102 |
+
> **Evaluation protocol**: `lighteval` on **ArabicMMLU (OALL‑2)**.
|
| 103 |
+
|
| 104 |
+
---
|
| 105 |
+
|
| 106 |
+
## 📚 Citation
|
| 107 |
+
|
| 108 |
+
If you find **Hala** useful, please cite:
|
| 109 |
+
|
| 110 |
+
```bibtex
|
| 111 |
+
@article{hala2025technicalreport,
|
| 112 |
+
title = {Hala Technical Report: Building Arabic-Centric Instruction \& Translation Models at Scale},
|
| 113 |
+
author = {Hammoud, Hasan Abed Al Kader and Zbeeb, Mohammad and Ghanem, Bernard},
|
| 114 |
+
journal = {arXiv preprint},
|
| 115 |
+
year = {2025},
|
| 116 |
+
note = {KAUST},
|
| 117 |
+
}
|
| 118 |
+
```
|